Yuwei Zhang, Yiren Yang, Jiangping Song, Wenqing Yu, Yaqian Li, Denghong Liu, Jie Gao, Bei Fan, Fengzhong Wang, Yang Zheng
{"title":"老香黄多糖通过肠道微生物亚油酸促进结肠炎抗炎细胞因子白细胞介素-10的生成","authors":"Yuwei Zhang, Yiren Yang, Jiangping Song, Wenqing Yu, Yaqian Li, Denghong Liu, Jie Gao, Bei Fan, Fengzhong Wang, Yang Zheng","doi":"10.1016/j.phymed.2024.156136","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo.</p><p><strong>Purpose: </strong>To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms.</p><p><strong>Methods: </strong>We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells.</p><p><strong>Results: </strong>LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses.</p><p><strong>Conclusions: </strong>Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"135 ","pages":"156136"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laoxianghuang polysaccharide promotes the anti-inflammatory cytokine interleukin-10 in colitis via gut microbial linoleic acid.\",\"authors\":\"Yuwei Zhang, Yiren Yang, Jiangping Song, Wenqing Yu, Yaqian Li, Denghong Liu, Jie Gao, Bei Fan, Fengzhong Wang, Yang Zheng\",\"doi\":\"10.1016/j.phymed.2024.156136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo.</p><p><strong>Purpose: </strong>To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms.</p><p><strong>Methods: </strong>We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells.</p><p><strong>Results: </strong>LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses.</p><p><strong>Conclusions: </strong>Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.</p>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":\"135 \",\"pages\":\"156136\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.phymed.2024.156136\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156136","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Laoxianghuang polysaccharide promotes the anti-inflammatory cytokine interleukin-10 in colitis via gut microbial linoleic acid.
Background: Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo.
Purpose: To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms.
Methods: We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells.
Results: LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses.
Conclusions: Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.