利用GP1BA多态性的机器学习模型预测中国脑卒中患者的实验室阿司匹林耐药性

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Jun Liu, Linkun Pan, Sheng Wang, Yueran Li, Yilai Wu, Jiajie Luan, Kui Yang
{"title":"利用GP1BA多态性的机器学习模型预测中国脑卒中患者的实验室阿司匹林耐药性","authors":"Jun Liu, Linkun Pan, Sheng Wang, Yueran Li, Yilai Wu, Jiajie Luan, Kui Yang","doi":"10.1080/14622416.2024.2411939","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to use machine learning model to predict laboratory aspirin resistance (AR) in Chinese stroke patients by incorporating patient characteristics and single nucleotide polymorphisms of <i>GP1BA</i> and <i>LTC4S</i>. 2405 patients were analyzed to measure the Mutation frequency of <i>GP1BA</i> rs6065 and <i>LTC4S</i> rs730012. 112 patients with first-stroke arteriostenosis were prospectively enrolled to establish machine learning model. GP1BA rs6065 mutation frequency is 5.26% and LTC4S rs730012 is 14.78%. <i>GP1BA</i> rs6065 CT patients have more sensitivity to aspirin than CC genotype. Simple linear regression identified significant associations with age, smoking, HDL and <i>GP1BA</i> rs6065. Random forest (RF) and extreme gradient boosting (XGBoost) demonstrated predictive capabilities for AR. Findings suggest pre-identifying <i>GP1BA</i> rs6065 could optimize aspirin treatment, enabling personalized care and future research avenues.</p>","PeriodicalId":20018,"journal":{"name":"Pharmacogenomics","volume":" ","pages":"1-12"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting laboratory aspirin resistance in Chinese stroke patients using machine learning models by GP1BA polymorphism.\",\"authors\":\"Jun Liu, Linkun Pan, Sheng Wang, Yueran Li, Yilai Wu, Jiajie Luan, Kui Yang\",\"doi\":\"10.1080/14622416.2024.2411939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to use machine learning model to predict laboratory aspirin resistance (AR) in Chinese stroke patients by incorporating patient characteristics and single nucleotide polymorphisms of <i>GP1BA</i> and <i>LTC4S</i>. 2405 patients were analyzed to measure the Mutation frequency of <i>GP1BA</i> rs6065 and <i>LTC4S</i> rs730012. 112 patients with first-stroke arteriostenosis were prospectively enrolled to establish machine learning model. GP1BA rs6065 mutation frequency is 5.26% and LTC4S rs730012 is 14.78%. <i>GP1BA</i> rs6065 CT patients have more sensitivity to aspirin than CC genotype. Simple linear regression identified significant associations with age, smoking, HDL and <i>GP1BA</i> rs6065. Random forest (RF) and extreme gradient boosting (XGBoost) demonstrated predictive capabilities for AR. Findings suggest pre-identifying <i>GP1BA</i> rs6065 could optimize aspirin treatment, enabling personalized care and future research avenues.</p>\",\"PeriodicalId\":20018,\"journal\":{\"name\":\"Pharmacogenomics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14622416.2024.2411939\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14622416.2024.2411939","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用机器学习模型,结合患者特征和 GP1BA 和 LTC4S 的单核苷酸多态性,预测中国脑卒中患者的实验室阿司匹林耐药性(AR)。对2405名患者进行分析,测量GP1BA rs6065和LTC4S rs730012的突变频率。前瞻性地纳入了112名首次中风动脉狭窄症患者,以建立机器学习模型。GP1BA rs6065 突变频率为 5.26%,LTC4S rs730012 突变频率为 14.78%。GP1BA rs6065 CT 基因型患者比 CC 基因型患者对阿司匹林更敏感。简单线性回归确定了与年龄、吸烟、高密度脂蛋白和 GP1BA rs6065 的显著关联。随机森林(RF)和极端梯度提升(XGBoost)显示了对 AR 的预测能力。研究结果表明,预先识别 GP1BA rs6065 可以优化阿司匹林治疗,从而实现个性化护理和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting laboratory aspirin resistance in Chinese stroke patients using machine learning models by GP1BA polymorphism.

This study aims to use machine learning model to predict laboratory aspirin resistance (AR) in Chinese stroke patients by incorporating patient characteristics and single nucleotide polymorphisms of GP1BA and LTC4S. 2405 patients were analyzed to measure the Mutation frequency of GP1BA rs6065 and LTC4S rs730012. 112 patients with first-stroke arteriostenosis were prospectively enrolled to establish machine learning model. GP1BA rs6065 mutation frequency is 5.26% and LTC4S rs730012 is 14.78%. GP1BA rs6065 CT patients have more sensitivity to aspirin than CC genotype. Simple linear regression identified significant associations with age, smoking, HDL and GP1BA rs6065. Random forest (RF) and extreme gradient boosting (XGBoost) demonstrated predictive capabilities for AR. Findings suggest pre-identifying GP1BA rs6065 could optimize aspirin treatment, enabling personalized care and future research avenues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacogenomics
Pharmacogenomics 医学-药学
CiteScore
3.40
自引率
9.50%
发文量
88
审稿时长
4-8 weeks
期刊介绍: Pharmacogenomics (ISSN 1462-2416) is a peer-reviewed journal presenting reviews and reports by the researchers and decision-makers closely involved in this rapidly developing area. Key objectives are to provide the community with an essential resource for keeping abreast of the latest developments in all areas of this exciting field. Pharmacogenomics is the leading source of commentary and analysis, bringing you the highest quality expert analyses from corporate and academic opinion leaders in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信