María Magariños-Triviño, Eduardo Díaz-Torres, Javier Suárez-González, Ana Santoveña-Estévez, José B Fariña
{"title":"设计用于儿科的新型三维打印、模制和口服粘稠布地奈德制剂:对其黏附性能的比较评估","authors":"María Magariños-Triviño, Eduardo Díaz-Torres, Javier Suárez-González, Ana Santoveña-Estévez, José B Fariña","doi":"10.3390/pharmaceutics16101338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery and therapeutic outcomes in paediatric EoE.</p><p><strong>Methods: </strong>This study encompasses the development of oral viscous suspensions and orodispersible solid formulations (moulded tablets and 3D-printed dosage forms) containing BUD. The formulations underwent quality control tests as per the European Pharmacopoeia, chemical stability assessments, and an in vitro evaluation of their mucoadhesiveness properties.</p><p><strong>Results: </strong>A validated analytical method enabled accurate BUD quantification and efficient extraction, and all developed formulations demonstrated chemical stability for 30 days, meeting Ph. Eur. quality standards. Three-dimensional printing using SSE successfully produced 1 mg and 0.5 mg BUD printlets, complying with quality tests for conventional tablets. Formulations containing xanthan gum (L2-XG and P1-0.5-XG) exhibited superior mucoadhesive properties. L2-XG showed significantly higher mucoadhesion than L1-MC. Among the solid formulations, P1-0.5-XG demonstrated the highest mucoadhesive properties.</p><p><strong>Conclusions: </strong>This is the first study to develop solid oral dosage forms of BUD at a very low dose, specifically for paediatric use. The results highlight the potential of 3D printing for developing individualised orodispersible BUD formulations with improved bioadhesion for paediatric EoE treatment. The L2-XG formulation and the XG-containing printlets are the most promising formulations in terms of increasing contact time with the oesophageal mucosa, which could translate into improved therapeutic efficacy in this patient population.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"16 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510639/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties.\",\"authors\":\"María Magariños-Triviño, Eduardo Díaz-Torres, Javier Suárez-González, Ana Santoveña-Estévez, José B Fariña\",\"doi\":\"10.3390/pharmaceutics16101338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery and therapeutic outcomes in paediatric EoE.</p><p><strong>Methods: </strong>This study encompasses the development of oral viscous suspensions and orodispersible solid formulations (moulded tablets and 3D-printed dosage forms) containing BUD. The formulations underwent quality control tests as per the European Pharmacopoeia, chemical stability assessments, and an in vitro evaluation of their mucoadhesiveness properties.</p><p><strong>Results: </strong>A validated analytical method enabled accurate BUD quantification and efficient extraction, and all developed formulations demonstrated chemical stability for 30 days, meeting Ph. Eur. quality standards. Three-dimensional printing using SSE successfully produced 1 mg and 0.5 mg BUD printlets, complying with quality tests for conventional tablets. Formulations containing xanthan gum (L2-XG and P1-0.5-XG) exhibited superior mucoadhesive properties. L2-XG showed significantly higher mucoadhesion than L1-MC. Among the solid formulations, P1-0.5-XG demonstrated the highest mucoadhesive properties.</p><p><strong>Conclusions: </strong>This is the first study to develop solid oral dosage forms of BUD at a very low dose, specifically for paediatric use. The results highlight the potential of 3D printing for developing individualised orodispersible BUD formulations with improved bioadhesion for paediatric EoE treatment. The L2-XG formulation and the XG-containing printlets are the most promising formulations in terms of increasing contact time with the oesophageal mucosa, which could translate into improved therapeutic efficacy in this patient population.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics16101338\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties.
Background/objectives: Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery and therapeutic outcomes in paediatric EoE.
Methods: This study encompasses the development of oral viscous suspensions and orodispersible solid formulations (moulded tablets and 3D-printed dosage forms) containing BUD. The formulations underwent quality control tests as per the European Pharmacopoeia, chemical stability assessments, and an in vitro evaluation of their mucoadhesiveness properties.
Results: A validated analytical method enabled accurate BUD quantification and efficient extraction, and all developed formulations demonstrated chemical stability for 30 days, meeting Ph. Eur. quality standards. Three-dimensional printing using SSE successfully produced 1 mg and 0.5 mg BUD printlets, complying with quality tests for conventional tablets. Formulations containing xanthan gum (L2-XG and P1-0.5-XG) exhibited superior mucoadhesive properties. L2-XG showed significantly higher mucoadhesion than L1-MC. Among the solid formulations, P1-0.5-XG demonstrated the highest mucoadhesive properties.
Conclusions: This is the first study to develop solid oral dosage forms of BUD at a very low dose, specifically for paediatric use. The results highlight the potential of 3D printing for developing individualised orodispersible BUD formulations with improved bioadhesion for paediatric EoE treatment. The L2-XG formulation and the XG-containing printlets are the most promising formulations in terms of increasing contact time with the oesophageal mucosa, which could translate into improved therapeutic efficacy in this patient population.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.