Rustam M Buzikov, Vladislav A Kulyabin, Olga N Koposova, Vyacheslav A Arlyapov, Andrey M Shadrin
{"title":"肠球菌噬菌体 vB_EfS_SE 的特征及其含有 PlySE-碳水化合物结合域和合成酶域的嵌合内溶素的特性。","authors":"Rustam M Buzikov, Vladislav A Kulyabin, Olga N Koposova, Vyacheslav A Arlyapov, Andrey M Shadrin","doi":"10.3390/pharmaceutics16101312","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The World Health Organization has selected enterococci as one of the priority multidrug-resistant microorganisms for the development of new antibacterial drugs. Bacteriophages are promising antibacterial agents, but the biology of bacteriophages requires deeper understanding. <b>Methods:</b> The vB_EfS_SE phage which is capable of infecting four species of the genus <i>Enterococci</i> was isolated from sewage plant. The complete genome of the vB_EfS_SE phage was sequenced using illumina technology. The endolysin gene was cloned into pBAD18 expression vector. Two chimeric endolysins were engineered using the vB_EfS_SE carbohydrate-binding domain (CBD) and replacing its enzymatically active domain (EAD). <b>Results:</b> The bacteriophage exhibits promising lytic properties and persists at temperatures of 40 °C and below, and under pH conditions ranging from 5 to 11. The genome sequence is 57,904 bp in length. The vB_EfS_SE endolysin PlySE and chimeric endolysins PlyIME-SE and PlySheep-SE were found to have the same range of specificity, but different thermostability properties and a different pH range for enzyme activity. <b>Conclusions:</b> Taking together the results obtained in this work and other published studies, we can highly appreciate the potential of <i>Saphexavirus</i> phages and their endolysins as novel antibacterial compounds.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characteristics of the Enterococcus Phage vB_EfS_SE, and the Properties of Its Chimeric Endolysins Harboring a PlySE-Carbohydrate-Binding Domain and a Synthetic Enzymatic Domain.\",\"authors\":\"Rustam M Buzikov, Vladislav A Kulyabin, Olga N Koposova, Vyacheslav A Arlyapov, Andrey M Shadrin\",\"doi\":\"10.3390/pharmaceutics16101312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> The World Health Organization has selected enterococci as one of the priority multidrug-resistant microorganisms for the development of new antibacterial drugs. Bacteriophages are promising antibacterial agents, but the biology of bacteriophages requires deeper understanding. <b>Methods:</b> The vB_EfS_SE phage which is capable of infecting four species of the genus <i>Enterococci</i> was isolated from sewage plant. The complete genome of the vB_EfS_SE phage was sequenced using illumina technology. The endolysin gene was cloned into pBAD18 expression vector. Two chimeric endolysins were engineered using the vB_EfS_SE carbohydrate-binding domain (CBD) and replacing its enzymatically active domain (EAD). <b>Results:</b> The bacteriophage exhibits promising lytic properties and persists at temperatures of 40 °C and below, and under pH conditions ranging from 5 to 11. The genome sequence is 57,904 bp in length. The vB_EfS_SE endolysin PlySE and chimeric endolysins PlyIME-SE and PlySheep-SE were found to have the same range of specificity, but different thermostability properties and a different pH range for enzyme activity. <b>Conclusions:</b> Taking together the results obtained in this work and other published studies, we can highly appreciate the potential of <i>Saphexavirus</i> phages and their endolysins as novel antibacterial compounds.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics16101312\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Characteristics of the Enterococcus Phage vB_EfS_SE, and the Properties of Its Chimeric Endolysins Harboring a PlySE-Carbohydrate-Binding Domain and a Synthetic Enzymatic Domain.
Background/Objectives: The World Health Organization has selected enterococci as one of the priority multidrug-resistant microorganisms for the development of new antibacterial drugs. Bacteriophages are promising antibacterial agents, but the biology of bacteriophages requires deeper understanding. Methods: The vB_EfS_SE phage which is capable of infecting four species of the genus Enterococci was isolated from sewage plant. The complete genome of the vB_EfS_SE phage was sequenced using illumina technology. The endolysin gene was cloned into pBAD18 expression vector. Two chimeric endolysins were engineered using the vB_EfS_SE carbohydrate-binding domain (CBD) and replacing its enzymatically active domain (EAD). Results: The bacteriophage exhibits promising lytic properties and persists at temperatures of 40 °C and below, and under pH conditions ranging from 5 to 11. The genome sequence is 57,904 bp in length. The vB_EfS_SE endolysin PlySE and chimeric endolysins PlyIME-SE and PlySheep-SE were found to have the same range of specificity, but different thermostability properties and a different pH range for enzyme activity. Conclusions: Taking together the results obtained in this work and other published studies, we can highly appreciate the potential of Saphexavirus phages and their endolysins as novel antibacterial compounds.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.