{"title":"评估生物合成银纳米粒子对受沙巴疟原虫感染的肾脏的治疗效果的组织形态计量学研究。","authors":"Mutee Murshed, Jameel Al-Tamimi, Khalid Elfaki Ibrahim, Saleh Al-Quraishy","doi":"10.1515/biol-2022-0968","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to verify the pathogenic malarial kidney infections and histopathological pictures in mice infected with <i>Plasmodium chabaudi</i> using <i>Indigofera oblongifolia</i> leaf extract silver nanoparticles (IOLEAgNPs). Fifty healthy adult female mice C57BL/6 were used. Animals were divided into five groups, with each group of ten mice. The first control non-infected group was given distilled water for 7 days. The second group was orally given 50 mg/kg of IOLEAgNPs. The third, fourth, and fifth groups were injected intraperitoneally with 10<sup>5</sup> parasitized erythrocytes of <i>P. chabaudi</i>. After 1 h, the fourth group received 50 mg/kg of IOLEAgNPs, while the fifth group orally received 10 mg/kg chloroquine phosphate. The histopathology of the kidney was studied by routine histology method with hematoxylin-eosin staining. The kidney revealed cerebral microvessel congestion, hemorrhages, and necrosis. Cast formation, glomerulonephritis, tubular necrosis, and congestion were observed in the kidney cortex. Consequently, the targeted medical IOLEAgNPs reduced this degeneration impact on renal tissue. Proven that plant-source synthesized IOLEAgNPs play a preventive role as antimalarial agents in female mice infected with <i>P. chabaudi.</i></p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"19 1","pages":"20220968"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500527/pdf/","citationCount":"0","resultStr":"{\"title\":\"A histomorphometric study to evaluate the therapeutic effects of biosynthesized silver nanoparticles on the kidneys infected with <i>Plasmodium chabaudi</i>.\",\"authors\":\"Mutee Murshed, Jameel Al-Tamimi, Khalid Elfaki Ibrahim, Saleh Al-Quraishy\",\"doi\":\"10.1515/biol-2022-0968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aimed to verify the pathogenic malarial kidney infections and histopathological pictures in mice infected with <i>Plasmodium chabaudi</i> using <i>Indigofera oblongifolia</i> leaf extract silver nanoparticles (IOLEAgNPs). Fifty healthy adult female mice C57BL/6 were used. Animals were divided into five groups, with each group of ten mice. The first control non-infected group was given distilled water for 7 days. The second group was orally given 50 mg/kg of IOLEAgNPs. The third, fourth, and fifth groups were injected intraperitoneally with 10<sup>5</sup> parasitized erythrocytes of <i>P. chabaudi</i>. After 1 h, the fourth group received 50 mg/kg of IOLEAgNPs, while the fifth group orally received 10 mg/kg chloroquine phosphate. The histopathology of the kidney was studied by routine histology method with hematoxylin-eosin staining. The kidney revealed cerebral microvessel congestion, hemorrhages, and necrosis. Cast formation, glomerulonephritis, tubular necrosis, and congestion were observed in the kidney cortex. Consequently, the targeted medical IOLEAgNPs reduced this degeneration impact on renal tissue. Proven that plant-source synthesized IOLEAgNPs play a preventive role as antimalarial agents in female mice infected with <i>P. chabaudi.</i></p>\",\"PeriodicalId\":19605,\"journal\":{\"name\":\"Open Life Sciences\",\"volume\":\"19 1\",\"pages\":\"20220968\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2022-0968\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-0968","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
A histomorphometric study to evaluate the therapeutic effects of biosynthesized silver nanoparticles on the kidneys infected with Plasmodium chabaudi.
The study aimed to verify the pathogenic malarial kidney infections and histopathological pictures in mice infected with Plasmodium chabaudi using Indigofera oblongifolia leaf extract silver nanoparticles (IOLEAgNPs). Fifty healthy adult female mice C57BL/6 were used. Animals were divided into five groups, with each group of ten mice. The first control non-infected group was given distilled water for 7 days. The second group was orally given 50 mg/kg of IOLEAgNPs. The third, fourth, and fifth groups were injected intraperitoneally with 105 parasitized erythrocytes of P. chabaudi. After 1 h, the fourth group received 50 mg/kg of IOLEAgNPs, while the fifth group orally received 10 mg/kg chloroquine phosphate. The histopathology of the kidney was studied by routine histology method with hematoxylin-eosin staining. The kidney revealed cerebral microvessel congestion, hemorrhages, and necrosis. Cast formation, glomerulonephritis, tubular necrosis, and congestion were observed in the kidney cortex. Consequently, the targeted medical IOLEAgNPs reduced this degeneration impact on renal tissue. Proven that plant-source synthesized IOLEAgNPs play a preventive role as antimalarial agents in female mice infected with P. chabaudi.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.