Luigi Vincenzo Pastore, Sniya Valsa Sudhakar, Kshitij Mankad, Enrico De Vita, Asthik Biswas, Martin M Tisdall, Aswin Chari, Matteo Figini, M Zubair Tahir, Sophie Adler, Friederike Moeller, J Helen Cross, Suresh Pujar, Konrad Wagstyl, Mathilde Ripart, Ulrike Löbel, Luigi Cirillo, Felice D'Arco
{"title":"整合标准癫痫方案、ASL-灌注、MP2RAGE/EDGE 和 MELD-FCD 分类器检测细微致痫病灶:3 特斯拉 MRI 试验研究。","authors":"Luigi Vincenzo Pastore, Sniya Valsa Sudhakar, Kshitij Mankad, Enrico De Vita, Asthik Biswas, Martin M Tisdall, Aswin Chari, Matteo Figini, M Zubair Tahir, Sophie Adler, Friederike Moeller, J Helen Cross, Suresh Pujar, Konrad Wagstyl, Mathilde Ripart, Ulrike Löbel, Luigi Cirillo, Felice D'Arco","doi":"10.1007/s00234-024-03488-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malformations of cortical development (MCDs) in children with focal epilepsy pose significant diagnostic challenges, and a precise radiological diagnosis is crucial for surgical planning. New MRI sequences and the use of artificial intelligence (AI) algorithms are considered very promising in this regard, yet studies evaluating the relative contribution of each diagnostic technique are lacking.</p><p><strong>Methods: </strong>The study was conducted using a dedicated \"EPI-MCD MR protocol\" with a 3 Tesla MRI scanner in patients with focal epilepsy and previously negative MRI. MRI sequences evaluated included 3D FLAIR, 3D T1 MPRAGE, T2 Turbo Spin Echo (TSE), 3D T1 MP2RAGE, and Arterial Spin Labelling (ASL). Two paediatric neuroradiologists scored each sequence for localisation and extension of the lesion. The MELD-FCD AI classifier's performance in identifying pathological findings was also assessed. We only included patients where a diagnosis of MCD was subsequently confirmed on histology and/or sEEG.</p><p><strong>Results: </strong>The 3D FLAIR sequence showed the highest yield in detecting epileptogenic lesions, with 3D T1 MPRAGE, T2 TSE, and 3D T1 MP2RAGE sequences showing moderate to low yield. ASL was the least useful. The MELD-FCD classifier achieved a 69.2% true positive rate. In one case, MELD identified a subtle area of cortical dysplasia overlooked by the neuroradiologists, changing the management of the patient.</p><p><strong>Conclusions: </strong>The 3D FLAIR sequence is the most effective in the MRI-based diagnosis of subtle epileptogenic lesions, outperforming other sequences in localisation and extension. This pilot study emphasizes the importance of careful assessment of the value of additional sequences.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating standard epilepsy protocol, ASL-perfusion, MP2RAGE/EDGE and the MELD-FCD classifier in the detection of subtle epileptogenic lesions: a 3 Tesla MRI pilot study.\",\"authors\":\"Luigi Vincenzo Pastore, Sniya Valsa Sudhakar, Kshitij Mankad, Enrico De Vita, Asthik Biswas, Martin M Tisdall, Aswin Chari, Matteo Figini, M Zubair Tahir, Sophie Adler, Friederike Moeller, J Helen Cross, Suresh Pujar, Konrad Wagstyl, Mathilde Ripart, Ulrike Löbel, Luigi Cirillo, Felice D'Arco\",\"doi\":\"10.1007/s00234-024-03488-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Malformations of cortical development (MCDs) in children with focal epilepsy pose significant diagnostic challenges, and a precise radiological diagnosis is crucial for surgical planning. New MRI sequences and the use of artificial intelligence (AI) algorithms are considered very promising in this regard, yet studies evaluating the relative contribution of each diagnostic technique are lacking.</p><p><strong>Methods: </strong>The study was conducted using a dedicated \\\"EPI-MCD MR protocol\\\" with a 3 Tesla MRI scanner in patients with focal epilepsy and previously negative MRI. MRI sequences evaluated included 3D FLAIR, 3D T1 MPRAGE, T2 Turbo Spin Echo (TSE), 3D T1 MP2RAGE, and Arterial Spin Labelling (ASL). Two paediatric neuroradiologists scored each sequence for localisation and extension of the lesion. The MELD-FCD AI classifier's performance in identifying pathological findings was also assessed. We only included patients where a diagnosis of MCD was subsequently confirmed on histology and/or sEEG.</p><p><strong>Results: </strong>The 3D FLAIR sequence showed the highest yield in detecting epileptogenic lesions, with 3D T1 MPRAGE, T2 TSE, and 3D T1 MP2RAGE sequences showing moderate to low yield. ASL was the least useful. The MELD-FCD classifier achieved a 69.2% true positive rate. In one case, MELD identified a subtle area of cortical dysplasia overlooked by the neuroradiologists, changing the management of the patient.</p><p><strong>Conclusions: </strong>The 3D FLAIR sequence is the most effective in the MRI-based diagnosis of subtle epileptogenic lesions, outperforming other sequences in localisation and extension. This pilot study emphasizes the importance of careful assessment of the value of additional sequences.</p>\",\"PeriodicalId\":19422,\"journal\":{\"name\":\"Neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03488-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03488-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Integrating standard epilepsy protocol, ASL-perfusion, MP2RAGE/EDGE and the MELD-FCD classifier in the detection of subtle epileptogenic lesions: a 3 Tesla MRI pilot study.
Background: Malformations of cortical development (MCDs) in children with focal epilepsy pose significant diagnostic challenges, and a precise radiological diagnosis is crucial for surgical planning. New MRI sequences and the use of artificial intelligence (AI) algorithms are considered very promising in this regard, yet studies evaluating the relative contribution of each diagnostic technique are lacking.
Methods: The study was conducted using a dedicated "EPI-MCD MR protocol" with a 3 Tesla MRI scanner in patients with focal epilepsy and previously negative MRI. MRI sequences evaluated included 3D FLAIR, 3D T1 MPRAGE, T2 Turbo Spin Echo (TSE), 3D T1 MP2RAGE, and Arterial Spin Labelling (ASL). Two paediatric neuroradiologists scored each sequence for localisation and extension of the lesion. The MELD-FCD AI classifier's performance in identifying pathological findings was also assessed. We only included patients where a diagnosis of MCD was subsequently confirmed on histology and/or sEEG.
Results: The 3D FLAIR sequence showed the highest yield in detecting epileptogenic lesions, with 3D T1 MPRAGE, T2 TSE, and 3D T1 MP2RAGE sequences showing moderate to low yield. ASL was the least useful. The MELD-FCD classifier achieved a 69.2% true positive rate. In one case, MELD identified a subtle area of cortical dysplasia overlooked by the neuroradiologists, changing the management of the patient.
Conclusions: The 3D FLAIR sequence is the most effective in the MRI-based diagnosis of subtle epileptogenic lesions, outperforming other sequences in localisation and extension. This pilot study emphasizes the importance of careful assessment of the value of additional sequences.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.