Michaël T J Peeters, Alida A Postma, Robert J van Oostenbrugge, Wouter J P Henneman, Julie Staals
{"title":"双能 CT 血管造影在检测脑出血潜在病因中的应用:一项观察性队列研究。","authors":"Michaël T J Peeters, Alida A Postma, Robert J van Oostenbrugge, Wouter J P Henneman, Julie Staals","doi":"10.1007/s00234-024-03473-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CT angiography (CTA) is often used to detect underlying causes of acute intracerebral hemorrhage (ICH). Dual-energy CT (DECT) is able to distinguish materials with similar attenuation but different compositions, such as hemorrhage and contrast. We aimed to evaluate the diagnostic yield of DECT angiography (DECTA), compared to conventional CTA in detecting underlying ICH causes.</p><p><strong>Methods: </strong>All non-traumatic ICH patients who underwent DECTA (both arterial as well as delayed venous phase) at our center between January 2014 and February 2020 were analyzed. Conventional CTA acquisitions were reconstructed ('merged') from DECTA data. Structural ICH causes were assessed on both reconstructed conventional CTA and DECTA. The final diagnosis was based on all available diagnostic and clinical findings during one-year follow up.</p><p><strong>Results: </strong>Of 206 included ICH patients, 30 (14.6%) had an underlying cause as final diagnosis. Conventional CTA showed a cause in 24 patients (11.7%), DECTA in 32 (15.5%). Both false positive and false negative findings occurred more frequently on conventional CTA. DECTA detected neoplastic ICH in all seven patients with a definite neoplastic ICH diagnosis, whereas conventional CTA only detected four of these cases. Both developmental venous anomalies (DVA) and cerebral venous sinus thrombosis (CVST) were more frequently seen on DECTA. Arteriovenous malformations and aneurysms were detected equally on both imaging modalities.</p><p><strong>Conclusions: </strong>Performing DECTA at clinical presentation of ICH may be of additional diagnostic value in the early detection of underlying causes, especially neoplasms, CVST and DVAs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-energy CT angiography in detecting underlying causes of intracerebral hemorrhage: an observational cohort study.\",\"authors\":\"Michaël T J Peeters, Alida A Postma, Robert J van Oostenbrugge, Wouter J P Henneman, Julie Staals\",\"doi\":\"10.1007/s00234-024-03473-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>CT angiography (CTA) is often used to detect underlying causes of acute intracerebral hemorrhage (ICH). Dual-energy CT (DECT) is able to distinguish materials with similar attenuation but different compositions, such as hemorrhage and contrast. We aimed to evaluate the diagnostic yield of DECT angiography (DECTA), compared to conventional CTA in detecting underlying ICH causes.</p><p><strong>Methods: </strong>All non-traumatic ICH patients who underwent DECTA (both arterial as well as delayed venous phase) at our center between January 2014 and February 2020 were analyzed. Conventional CTA acquisitions were reconstructed ('merged') from DECTA data. Structural ICH causes were assessed on both reconstructed conventional CTA and DECTA. The final diagnosis was based on all available diagnostic and clinical findings during one-year follow up.</p><p><strong>Results: </strong>Of 206 included ICH patients, 30 (14.6%) had an underlying cause as final diagnosis. Conventional CTA showed a cause in 24 patients (11.7%), DECTA in 32 (15.5%). Both false positive and false negative findings occurred more frequently on conventional CTA. DECTA detected neoplastic ICH in all seven patients with a definite neoplastic ICH diagnosis, whereas conventional CTA only detected four of these cases. Both developmental venous anomalies (DVA) and cerebral venous sinus thrombosis (CVST) were more frequently seen on DECTA. Arteriovenous malformations and aneurysms were detected equally on both imaging modalities.</p><p><strong>Conclusions: </strong>Performing DECTA at clinical presentation of ICH may be of additional diagnostic value in the early detection of underlying causes, especially neoplasms, CVST and DVAs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03473-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03473-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dual-energy CT angiography in detecting underlying causes of intracerebral hemorrhage: an observational cohort study.
Background: CT angiography (CTA) is often used to detect underlying causes of acute intracerebral hemorrhage (ICH). Dual-energy CT (DECT) is able to distinguish materials with similar attenuation but different compositions, such as hemorrhage and contrast. We aimed to evaluate the diagnostic yield of DECT angiography (DECTA), compared to conventional CTA in detecting underlying ICH causes.
Methods: All non-traumatic ICH patients who underwent DECTA (both arterial as well as delayed venous phase) at our center between January 2014 and February 2020 were analyzed. Conventional CTA acquisitions were reconstructed ('merged') from DECTA data. Structural ICH causes were assessed on both reconstructed conventional CTA and DECTA. The final diagnosis was based on all available diagnostic and clinical findings during one-year follow up.
Results: Of 206 included ICH patients, 30 (14.6%) had an underlying cause as final diagnosis. Conventional CTA showed a cause in 24 patients (11.7%), DECTA in 32 (15.5%). Both false positive and false negative findings occurred more frequently on conventional CTA. DECTA detected neoplastic ICH in all seven patients with a definite neoplastic ICH diagnosis, whereas conventional CTA only detected four of these cases. Both developmental venous anomalies (DVA) and cerebral venous sinus thrombosis (CVST) were more frequently seen on DECTA. Arteriovenous malformations and aneurysms were detected equally on both imaging modalities.
Conclusions: Performing DECTA at clinical presentation of ICH may be of additional diagnostic value in the early detection of underlying causes, especially neoplasms, CVST and DVAs.