Jainey P James, Mariyam Jouhara B M, Sneh Priya, Divya Jyothi, Rajalakshimi Vasudevan
{"title":"作为癌症化学预防中脱氧核苷激酶类似物抑制剂的氨基嘧啶的同源性建模、分子对接研究和合成。","authors":"Jainey P James, Mariyam Jouhara B M, Sneh Priya, Divya Jyothi, Rajalakshimi Vasudevan","doi":"10.1080/15257770.2024.2417898","DOIUrl":null,"url":null,"abstract":"<p><p>The development of alternative anticancer agents with minimal side effects has become more critical due to the rising recurrence of mammalian malignancies and the severe side effects of chemotherapeutic treatments. Kinases are an essential target for neostatic impact as they play an important role in the modulation of growth factor signalling. Our work aims to screen novel nine-series of thiazole-based aminopyrimidines and sulphaminopyrimidines against the enzymes mitochondrial thymidine kinase 2, deoxyguanosine kinase (2OCP), deoxycytidine kinase (2QRN) and thymidylate kinase (1E2Q) by molecular docking, synthesise and to study their in vitro inhibitory studies. The synthesised compounds were characterised by Infrared, Nuclear magnetic resonance and Mass spectroscopy. In silico studies, compound 4c stands out among the series, with a reported docking score ranging from -6 to -8 Kcal/mol against all the analogue kinases. The in vitro cytotoxicity assay against human small-cell lung carcinoma (A-549) has shown that 5c (IC<sub>50</sub> = 53.9 µM) has an excellent cytotoxic effect over 4c (IC<sub>50</sub>= 68.68 µM). The reason might be the presence of the benzene sulphonamide group, which enhances their anticancer action. To conclude, the compounds 4c and 5c were found to be potent inhibitors of the deoxynucleoside kinases. In vivo studies must further verify these to prove their potent neostatic effect.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homology modelling, molecular docking studies and synthesis of aminopyrimidines as inhibitors for deoxynucleoside kinase analogues in cancer chemoprevention.\",\"authors\":\"Jainey P James, Mariyam Jouhara B M, Sneh Priya, Divya Jyothi, Rajalakshimi Vasudevan\",\"doi\":\"10.1080/15257770.2024.2417898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of alternative anticancer agents with minimal side effects has become more critical due to the rising recurrence of mammalian malignancies and the severe side effects of chemotherapeutic treatments. Kinases are an essential target for neostatic impact as they play an important role in the modulation of growth factor signalling. Our work aims to screen novel nine-series of thiazole-based aminopyrimidines and sulphaminopyrimidines against the enzymes mitochondrial thymidine kinase 2, deoxyguanosine kinase (2OCP), deoxycytidine kinase (2QRN) and thymidylate kinase (1E2Q) by molecular docking, synthesise and to study their in vitro inhibitory studies. The synthesised compounds were characterised by Infrared, Nuclear magnetic resonance and Mass spectroscopy. In silico studies, compound 4c stands out among the series, with a reported docking score ranging from -6 to -8 Kcal/mol against all the analogue kinases. The in vitro cytotoxicity assay against human small-cell lung carcinoma (A-549) has shown that 5c (IC<sub>50</sub> = 53.9 µM) has an excellent cytotoxic effect over 4c (IC<sub>50</sub>= 68.68 µM). The reason might be the presence of the benzene sulphonamide group, which enhances their anticancer action. To conclude, the compounds 4c and 5c were found to be potent inhibitors of the deoxynucleoside kinases. In vivo studies must further verify these to prove their potent neostatic effect.</p>\",\"PeriodicalId\":19343,\"journal\":{\"name\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15257770.2024.2417898\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2417898","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Homology modelling, molecular docking studies and synthesis of aminopyrimidines as inhibitors for deoxynucleoside kinase analogues in cancer chemoprevention.
The development of alternative anticancer agents with minimal side effects has become more critical due to the rising recurrence of mammalian malignancies and the severe side effects of chemotherapeutic treatments. Kinases are an essential target for neostatic impact as they play an important role in the modulation of growth factor signalling. Our work aims to screen novel nine-series of thiazole-based aminopyrimidines and sulphaminopyrimidines against the enzymes mitochondrial thymidine kinase 2, deoxyguanosine kinase (2OCP), deoxycytidine kinase (2QRN) and thymidylate kinase (1E2Q) by molecular docking, synthesise and to study their in vitro inhibitory studies. The synthesised compounds were characterised by Infrared, Nuclear magnetic resonance and Mass spectroscopy. In silico studies, compound 4c stands out among the series, with a reported docking score ranging from -6 to -8 Kcal/mol against all the analogue kinases. The in vitro cytotoxicity assay against human small-cell lung carcinoma (A-549) has shown that 5c (IC50 = 53.9 µM) has an excellent cytotoxic effect over 4c (IC50= 68.68 µM). The reason might be the presence of the benzene sulphonamide group, which enhances their anticancer action. To conclude, the compounds 4c and 5c were found to be potent inhibitors of the deoxynucleoside kinases. In vivo studies must further verify these to prove their potent neostatic effect.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.