{"title":"脾切除能阻止脑奥曲肽、胃泌素或催产素对大鼠肠屏障功能的改善,但不能阻止 GLP-1 诱导的改善。","authors":"Takuya Funayama, Tsukasa Nozu, Masatomo Ishioh, Sho Igarashi, Hiroki Tanaka, Chihiro Sumi, Takeshi Saito, Yasumichi Toki, Mayumi Hatayama, Masayo Yamamoto, Motohiro Shindo, Shuichiro Takahashi, Toshikatsu Okumura","doi":"10.1111/nmo.14949","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accumulating evidence has suggested that neuropeptides such as orexin, ghrelin, or oxytocin act centrally in the brain to regulate intestinal barrier function through the vagus nerve. It has been reported that the vagal cholinergic anti-inflammatory pathway was blocked by splenectomy. In the present study, we therefore examined the effect of splenectomy on neuropeptides-induced improvement of increased intestinal permeability.</p><p><strong>Methods: </strong>Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min spectrophotometrically in rats.</p><p><strong>Results: </strong>Splenectomy increased colonic permeability. The increased permeability by splenectomy was significantly blocked by vagal activation induced by carbachol or 2-deoxy-d-glucose which was prevented by atropine, suggesting vagal activation could prevent colonic hyperpermeability in splenectomized rats. In the splenectomized rats, intracisternal injection of orexin, ghrelin, oxytocin, or butyrate failed to inhibit increased colonic permeability while intracisternal glucagon-like peptide-1 (GLP-1) analogue, liraglutide, potently blocked the increased colonic permeability in a dose-dependent manner. The liraglutide-induced improvement of increased colonic permeability was blocked by atropine in splenectomized rats. Intracisternal injection of GLP-1 receptor antagonist attenuated 2-deoxy-d-glucose-induced improvement of colonic hyperpermeability in splenectomized rats.</p><p><strong>Conclusion: </strong>The present results suggested that the spleen is important in the improvement of intestinal barrier function by brain orexin, ghrelin or oxytocin, and butyrate. On the other hand, GLP-1 acts centrally in the brain to improve colonic hyperpermeability in a spleen-independent manner. All these results suggest that dual mechanisms (spleen dependent or independent) may exist for the brain-gut regulation in intestinal barrier function.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e14949"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splenectomy prevents brain orexin, ghrelin, or oxytocin but not GLP-1-induced improvement of intestinal barrier function in rats.\",\"authors\":\"Takuya Funayama, Tsukasa Nozu, Masatomo Ishioh, Sho Igarashi, Hiroki Tanaka, Chihiro Sumi, Takeshi Saito, Yasumichi Toki, Mayumi Hatayama, Masayo Yamamoto, Motohiro Shindo, Shuichiro Takahashi, Toshikatsu Okumura\",\"doi\":\"10.1111/nmo.14949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accumulating evidence has suggested that neuropeptides such as orexin, ghrelin, or oxytocin act centrally in the brain to regulate intestinal barrier function through the vagus nerve. It has been reported that the vagal cholinergic anti-inflammatory pathway was blocked by splenectomy. In the present study, we therefore examined the effect of splenectomy on neuropeptides-induced improvement of increased intestinal permeability.</p><p><strong>Methods: </strong>Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min spectrophotometrically in rats.</p><p><strong>Results: </strong>Splenectomy increased colonic permeability. The increased permeability by splenectomy was significantly blocked by vagal activation induced by carbachol or 2-deoxy-d-glucose which was prevented by atropine, suggesting vagal activation could prevent colonic hyperpermeability in splenectomized rats. In the splenectomized rats, intracisternal injection of orexin, ghrelin, oxytocin, or butyrate failed to inhibit increased colonic permeability while intracisternal glucagon-like peptide-1 (GLP-1) analogue, liraglutide, potently blocked the increased colonic permeability in a dose-dependent manner. The liraglutide-induced improvement of increased colonic permeability was blocked by atropine in splenectomized rats. Intracisternal injection of GLP-1 receptor antagonist attenuated 2-deoxy-d-glucose-induced improvement of colonic hyperpermeability in splenectomized rats.</p><p><strong>Conclusion: </strong>The present results suggested that the spleen is important in the improvement of intestinal barrier function by brain orexin, ghrelin or oxytocin, and butyrate. On the other hand, GLP-1 acts centrally in the brain to improve colonic hyperpermeability in a spleen-independent manner. All these results suggest that dual mechanisms (spleen dependent or independent) may exist for the brain-gut regulation in intestinal barrier function.</p>\",\"PeriodicalId\":19123,\"journal\":{\"name\":\"Neurogastroenterology and Motility\",\"volume\":\" \",\"pages\":\"e14949\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogastroenterology and Motility\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nmo.14949\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.14949","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Splenectomy prevents brain orexin, ghrelin, or oxytocin but not GLP-1-induced improvement of intestinal barrier function in rats.
Background: Accumulating evidence has suggested that neuropeptides such as orexin, ghrelin, or oxytocin act centrally in the brain to regulate intestinal barrier function through the vagus nerve. It has been reported that the vagal cholinergic anti-inflammatory pathway was blocked by splenectomy. In the present study, we therefore examined the effect of splenectomy on neuropeptides-induced improvement of increased intestinal permeability.
Methods: Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min spectrophotometrically in rats.
Results: Splenectomy increased colonic permeability. The increased permeability by splenectomy was significantly blocked by vagal activation induced by carbachol or 2-deoxy-d-glucose which was prevented by atropine, suggesting vagal activation could prevent colonic hyperpermeability in splenectomized rats. In the splenectomized rats, intracisternal injection of orexin, ghrelin, oxytocin, or butyrate failed to inhibit increased colonic permeability while intracisternal glucagon-like peptide-1 (GLP-1) analogue, liraglutide, potently blocked the increased colonic permeability in a dose-dependent manner. The liraglutide-induced improvement of increased colonic permeability was blocked by atropine in splenectomized rats. Intracisternal injection of GLP-1 receptor antagonist attenuated 2-deoxy-d-glucose-induced improvement of colonic hyperpermeability in splenectomized rats.
Conclusion: The present results suggested that the spleen is important in the improvement of intestinal barrier function by brain orexin, ghrelin or oxytocin, and butyrate. On the other hand, GLP-1 acts centrally in the brain to improve colonic hyperpermeability in a spleen-independent manner. All these results suggest that dual mechanisms (spleen dependent or independent) may exist for the brain-gut regulation in intestinal barrier function.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.