Marta Safandowska, Cezary Makarewicz, Artur Rozanski
{"title":"调整低密度聚乙烯的阻隔性能:非晶区纳米结构对气体传输速率的影响。","authors":"Marta Safandowska, Cezary Makarewicz, Artur Rozanski","doi":"10.3390/molecules29204950","DOIUrl":null,"url":null,"abstract":"<p><p>This work focused on determining the factors that are of key importance in the oxygen barrier properties of low-density polyethylene (LDPE). It has been shown that, depending on the type and amount of the low-molecular-weight compound (tetracosane, paraffin wax, paraffin oil) introduced into the LDPE matrix, it can contribute to the improvement or deterioration of barrier properties. Tetracosane and paraffin wax incorporated into the LDPE matrix caused a reduction in oxygen permeability parameters compared to neat polyethylene. As their content increased, the barrier properties of the samples towards oxygen also increased. A completely opposite effect was achieved with paraffin oil. The results of comprehensive studies provide evidence that in the case of LDPE blends, two mechanisms are responsible for changing/controlling their transport properties. The first mechanism is associated with changes in the molecular packing in the interlamellar amorphous regions, while the second is related to the crystallinity of the samples. In cases where there are no changes in crystallinity, the density of the amorphous phase becomes the decisive factor in barrier properties, as clearly shown by results assessing chain dynamics.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tuning Barrier Properties of Low-Density Polyethylene: Impact of Amorphous Region Nanostructure on Gas Transmission Rate.\",\"authors\":\"Marta Safandowska, Cezary Makarewicz, Artur Rozanski\",\"doi\":\"10.3390/molecules29204950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work focused on determining the factors that are of key importance in the oxygen barrier properties of low-density polyethylene (LDPE). It has been shown that, depending on the type and amount of the low-molecular-weight compound (tetracosane, paraffin wax, paraffin oil) introduced into the LDPE matrix, it can contribute to the improvement or deterioration of barrier properties. Tetracosane and paraffin wax incorporated into the LDPE matrix caused a reduction in oxygen permeability parameters compared to neat polyethylene. As their content increased, the barrier properties of the samples towards oxygen also increased. A completely opposite effect was achieved with paraffin oil. The results of comprehensive studies provide evidence that in the case of LDPE blends, two mechanisms are responsible for changing/controlling their transport properties. The first mechanism is associated with changes in the molecular packing in the interlamellar amorphous regions, while the second is related to the crystallinity of the samples. In cases where there are no changes in crystallinity, the density of the amorphous phase becomes the decisive factor in barrier properties, as clearly shown by results assessing chain dynamics.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29204950\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204950","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tuning Barrier Properties of Low-Density Polyethylene: Impact of Amorphous Region Nanostructure on Gas Transmission Rate.
This work focused on determining the factors that are of key importance in the oxygen barrier properties of low-density polyethylene (LDPE). It has been shown that, depending on the type and amount of the low-molecular-weight compound (tetracosane, paraffin wax, paraffin oil) introduced into the LDPE matrix, it can contribute to the improvement or deterioration of barrier properties. Tetracosane and paraffin wax incorporated into the LDPE matrix caused a reduction in oxygen permeability parameters compared to neat polyethylene. As their content increased, the barrier properties of the samples towards oxygen also increased. A completely opposite effect was achieved with paraffin oil. The results of comprehensive studies provide evidence that in the case of LDPE blends, two mechanisms are responsible for changing/controlling their transport properties. The first mechanism is associated with changes in the molecular packing in the interlamellar amorphous regions, while the second is related to the crystallinity of the samples. In cases where there are no changes in crystallinity, the density of the amorphous phase becomes the decisive factor in barrier properties, as clearly shown by results assessing chain dynamics.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.