Siqi Deng, Yinxu Zhao, Xiaoshan Guo, Xian Hong, Gang Li, Yuchun Wang, Qingyi Li, Ming Bu, Ming Wang
{"title":"噻唑烷二酮共轭露贝醇衍生物通过线粒体介导的凋亡途径成为强效抗癌剂","authors":"Siqi Deng, Yinxu Zhao, Xiaoshan Guo, Xian Hong, Gang Li, Yuchun Wang, Qingyi Li, Ming Bu, Ming Wang","doi":"10.3390/molecules29204957","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (<b>6a</b>-<b>i</b>, <b>9a</b>-<b>i</b>, and <b>12a</b>-<b>i</b>) were prepared. The target compounds were evaluated for their cytotoxic activities against human lung cancer A549, human breast cancer MCF-7, human hepatocarcinoma HepG2, and human hepatic LO2 cell lines, and the results revealed that most of the compounds displayed improved potency over lupeol. Compound <b>12i</b> exhibited significant activity against the HepG2 cell line, with an IC<sub>50</sub> value of 4.40 μM, which is 9.9-fold more potent than lupeol (IC<sub>50</sub> = 43.62 μM). Mechanistic studies suggested that <b>12i</b> could induce HepG2 cell apoptosis, as evidenced by AO/EB staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound <b>12i</b> can upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Collectively, compound <b>12i</b> is worthy of further investigation to support the discovery of effective agents against cancer.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thiazolidinedione-Conjugated Lupeol Derivatives as Potent Anticancer Agents Through a Mitochondria-Mediated Apoptotic Pathway.\",\"authors\":\"Siqi Deng, Yinxu Zhao, Xiaoshan Guo, Xian Hong, Gang Li, Yuchun Wang, Qingyi Li, Ming Bu, Ming Wang\",\"doi\":\"10.3390/molecules29204957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (<b>6a</b>-<b>i</b>, <b>9a</b>-<b>i</b>, and <b>12a</b>-<b>i</b>) were prepared. The target compounds were evaluated for their cytotoxic activities against human lung cancer A549, human breast cancer MCF-7, human hepatocarcinoma HepG2, and human hepatic LO2 cell lines, and the results revealed that most of the compounds displayed improved potency over lupeol. Compound <b>12i</b> exhibited significant activity against the HepG2 cell line, with an IC<sub>50</sub> value of 4.40 μM, which is 9.9-fold more potent than lupeol (IC<sub>50</sub> = 43.62 μM). Mechanistic studies suggested that <b>12i</b> could induce HepG2 cell apoptosis, as evidenced by AO/EB staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound <b>12i</b> can upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Collectively, compound <b>12i</b> is worthy of further investigation to support the discovery of effective agents against cancer.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29204957\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204957","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thiazolidinedione-Conjugated Lupeol Derivatives as Potent Anticancer Agents Through a Mitochondria-Mediated Apoptotic Pathway.
To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (6a-i, 9a-i, and 12a-i) were prepared. The target compounds were evaluated for their cytotoxic activities against human lung cancer A549, human breast cancer MCF-7, human hepatocarcinoma HepG2, and human hepatic LO2 cell lines, and the results revealed that most of the compounds displayed improved potency over lupeol. Compound 12i exhibited significant activity against the HepG2 cell line, with an IC50 value of 4.40 μM, which is 9.9-fold more potent than lupeol (IC50 = 43.62 μM). Mechanistic studies suggested that 12i could induce HepG2 cell apoptosis, as evidenced by AO/EB staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 12i can upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Collectively, compound 12i is worthy of further investigation to support the discovery of effective agents against cancer.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.