Ziming Wang, Shushen Wu, Jiayi Wang, Ci Yang, Yang Wang, Zhan Hu, Wei Cai, Lianghong Liu
{"title":"响应面法优化冻融法提取何首乌多糖的过程","authors":"Ziming Wang, Shushen Wu, Jiayi Wang, Ci Yang, Yang Wang, Zhan Hu, Wei Cai, Lianghong Liu","doi":"10.3390/molecules29204879","DOIUrl":null,"url":null,"abstract":"<p><p><i>Polygonatum cyrtonema</i> polysaccharides have a variety of pharmacological effects. The commonly used extraction methods include traditional hot water extraction, alkaline extraction, enzymatic hydrolysis method, ultrasonic-assisted extraction, etc., but there are problems such as low yield, high temperature, high cost, strict extraction conditions, and insufficient environmental protection. In this study, crude polysaccharide extraction from the <i>Polygonatum cyrtonema</i> Hua was performed using the freeze-thaw method. Response surface methodology (RSM), based on a three-level, three-variable Box-Behnken design (BBD), was employed to obtain the best possible combination of water-to-raw material ratio (A: 30-50), freezing time (B: 2-10 h), and thawing temperature (C: 40-60 °C) for maximum polysaccharide extraction. Using the multiple regression analysis and analysis of variance (ANOVA), the experimental data were fitted to a second-order polynomial equation and were used to generate the mathematical model of optimization experiments. The optimum extraction conditions were as follows: a water-to-raw material ratio of 36.95:1, a freezing time of 4.8 h, and a thawing temperature of 55.99 °C. Under the optimal extraction conditions, the extraction rate of <i>Polygonatum cyrtonema</i> Hua polysaccharide (PCP) was 65.76 ± 0.32%, which is well in close agreement with the value predicted by the model, 65.92%. In addition, PCP has significant antioxidant activity. This result shows that the freeze-thaw method can improve the extraction efficiency, maintain the structural integrity of polysaccharides, simplify the extraction process, promote the dispersion of polysaccharides, and is suitable for large-scale industrial production.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of Polysaccharide Extraction from <i>Polygonatum cyrtonema</i> Hua by Freeze-Thaw Method Using Response Surface Methodology.\",\"authors\":\"Ziming Wang, Shushen Wu, Jiayi Wang, Ci Yang, Yang Wang, Zhan Hu, Wei Cai, Lianghong Liu\",\"doi\":\"10.3390/molecules29204879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Polygonatum cyrtonema</i> polysaccharides have a variety of pharmacological effects. The commonly used extraction methods include traditional hot water extraction, alkaline extraction, enzymatic hydrolysis method, ultrasonic-assisted extraction, etc., but there are problems such as low yield, high temperature, high cost, strict extraction conditions, and insufficient environmental protection. In this study, crude polysaccharide extraction from the <i>Polygonatum cyrtonema</i> Hua was performed using the freeze-thaw method. Response surface methodology (RSM), based on a three-level, three-variable Box-Behnken design (BBD), was employed to obtain the best possible combination of water-to-raw material ratio (A: 30-50), freezing time (B: 2-10 h), and thawing temperature (C: 40-60 °C) for maximum polysaccharide extraction. Using the multiple regression analysis and analysis of variance (ANOVA), the experimental data were fitted to a second-order polynomial equation and were used to generate the mathematical model of optimization experiments. The optimum extraction conditions were as follows: a water-to-raw material ratio of 36.95:1, a freezing time of 4.8 h, and a thawing temperature of 55.99 °C. Under the optimal extraction conditions, the extraction rate of <i>Polygonatum cyrtonema</i> Hua polysaccharide (PCP) was 65.76 ± 0.32%, which is well in close agreement with the value predicted by the model, 65.92%. In addition, PCP has significant antioxidant activity. This result shows that the freeze-thaw method can improve the extraction efficiency, maintain the structural integrity of polysaccharides, simplify the extraction process, promote the dispersion of polysaccharides, and is suitable for large-scale industrial production.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29204879\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204879","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Optimization of Polysaccharide Extraction from Polygonatum cyrtonema Hua by Freeze-Thaw Method Using Response Surface Methodology.
Polygonatum cyrtonema polysaccharides have a variety of pharmacological effects. The commonly used extraction methods include traditional hot water extraction, alkaline extraction, enzymatic hydrolysis method, ultrasonic-assisted extraction, etc., but there are problems such as low yield, high temperature, high cost, strict extraction conditions, and insufficient environmental protection. In this study, crude polysaccharide extraction from the Polygonatum cyrtonema Hua was performed using the freeze-thaw method. Response surface methodology (RSM), based on a three-level, three-variable Box-Behnken design (BBD), was employed to obtain the best possible combination of water-to-raw material ratio (A: 30-50), freezing time (B: 2-10 h), and thawing temperature (C: 40-60 °C) for maximum polysaccharide extraction. Using the multiple regression analysis and analysis of variance (ANOVA), the experimental data were fitted to a second-order polynomial equation and were used to generate the mathematical model of optimization experiments. The optimum extraction conditions were as follows: a water-to-raw material ratio of 36.95:1, a freezing time of 4.8 h, and a thawing temperature of 55.99 °C. Under the optimal extraction conditions, the extraction rate of Polygonatum cyrtonema Hua polysaccharide (PCP) was 65.76 ± 0.32%, which is well in close agreement with the value predicted by the model, 65.92%. In addition, PCP has significant antioxidant activity. This result shows that the freeze-thaw method can improve the extraction efficiency, maintain the structural integrity of polysaccharides, simplify the extraction process, promote the dispersion of polysaccharides, and is suitable for large-scale industrial production.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.