{"title":"掺银还原氧化石墨烯/PANI-DBSA-PLA 复合材料三维打印超级电容器。","authors":"Claudia Cirillo, Mariagrazia Iuliano, Davide Scarpa, Pierpaolo Iovane, Carmela Borriello, Sabrina Portofino, Sergio Galvagno, Maria Sarno","doi":"10.3390/nano14201681","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM). These electrodes were assembled into symmetric supercapacitor devices with a solid-state electrolyte. Electrochemical characterization, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, demonstrated considerable mass-specific capacitance values of 136.2 F/g and 133 F/g at 20 mV/s and 1 A/g, respectively. The devices showed excellent stability, retaining 91% of their initial capacitance after 5000 cycles. The incorporation of silver nanoparticles enhanced the conductivity of rGO, while PANI-DBSA improved electrochemical stability and performance. This study highlights the potential of combining advanced materials with 3D printing to optimize energy storage devices, offering a significant advancement over traditional manufacturing methods.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514729/pdf/","citationCount":"0","resultStr":"{\"title\":\"Silver-Doped Reduced Graphene Oxide/PANI-DBSA-PLA Composite 3D-Printed Supercapacitors.\",\"authors\":\"Claudia Cirillo, Mariagrazia Iuliano, Davide Scarpa, Pierpaolo Iovane, Carmela Borriello, Sabrina Portofino, Sergio Galvagno, Maria Sarno\",\"doi\":\"10.3390/nano14201681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM). These electrodes were assembled into symmetric supercapacitor devices with a solid-state electrolyte. Electrochemical characterization, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, demonstrated considerable mass-specific capacitance values of 136.2 F/g and 133 F/g at 20 mV/s and 1 A/g, respectively. The devices showed excellent stability, retaining 91% of their initial capacitance after 5000 cycles. The incorporation of silver nanoparticles enhanced the conductivity of rGO, while PANI-DBSA improved electrochemical stability and performance. This study highlights the potential of combining advanced materials with 3D printing to optimize energy storage devices, offering a significant advancement over traditional manufacturing methods.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201681\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201681","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM). These electrodes were assembled into symmetric supercapacitor devices with a solid-state electrolyte. Electrochemical characterization, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, demonstrated considerable mass-specific capacitance values of 136.2 F/g and 133 F/g at 20 mV/s and 1 A/g, respectively. The devices showed excellent stability, retaining 91% of their initial capacitance after 5000 cycles. The incorporation of silver nanoparticles enhanced the conductivity of rGO, while PANI-DBSA improved electrochemical stability and performance. This study highlights the potential of combining advanced materials with 3D printing to optimize energy storage devices, offering a significant advancement over traditional manufacturing methods.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.