半导体衬底上的受热金属纳米岛对热功率的声子拖曳贡献。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-21 DOI:10.3390/nano14201684
Alexander Arkhipov, Karina Trofimovich, Nikolay Arkhipov, Pavel Gabdullin
{"title":"半导体衬底上的受热金属纳米岛对热功率的声子拖曳贡献。","authors":"Alexander Arkhipov, Karina Trofimovich, Nikolay Arkhipov, Pavel Gabdullin","doi":"10.3390/nano14201684","DOIUrl":null,"url":null,"abstract":"<p><p>The possible contribution of phonon drag effect to the thermoelectrically sustained potential of a heated nanoisland on a semiconductor surface was estimated in a first principal consideration. We regarded electrons and phonons as interacting particles, and the interaction cross-section was derived from the basic theory of semiconductors. The solution of the equation of motion for average electrons under the simultaneous action of phonon drag and electric field gave the distributions of phonon flux, density of charge carriers and electric potential. Dimensional suppression of thermal conductance and electron-phonon interaction were accounted for but found to be less effective than expected. The developed model predicts the formation of a layer with a high density of charge carriers that is practically independent of the concentration of dopant ions. This layer can effectively intercept the phonon flow propagating from the heated nanoisland. The resulting thermoEMF can have sufficient magnitudes to explain the low-voltage electron emission capability of nanoisland films of metals and sp<sup>2</sup>-bonded carbon, previously studied by our group. The phenomenon predicted by the model can be used in thermoelectric converters with untypical parameters or in systems for local cooling.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 20","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate.\",\"authors\":\"Alexander Arkhipov, Karina Trofimovich, Nikolay Arkhipov, Pavel Gabdullin\",\"doi\":\"10.3390/nano14201684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The possible contribution of phonon drag effect to the thermoelectrically sustained potential of a heated nanoisland on a semiconductor surface was estimated in a first principal consideration. We regarded electrons and phonons as interacting particles, and the interaction cross-section was derived from the basic theory of semiconductors. The solution of the equation of motion for average electrons under the simultaneous action of phonon drag and electric field gave the distributions of phonon flux, density of charge carriers and electric potential. Dimensional suppression of thermal conductance and electron-phonon interaction were accounted for but found to be less effective than expected. The developed model predicts the formation of a layer with a high density of charge carriers that is practically independent of the concentration of dopant ions. This layer can effectively intercept the phonon flow propagating from the heated nanoisland. The resulting thermoEMF can have sufficient magnitudes to explain the low-voltage electron emission capability of nanoisland films of metals and sp<sup>2</sup>-bonded carbon, previously studied by our group. The phenomenon predicted by the model can be used in thermoelectric converters with untypical parameters or in systems for local cooling.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 20\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201684\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过第一主要考虑,估算了声子拖曳效应对半导体表面受热纳米岛的热电持续电势的可能贡献。我们将电子和声子视为相互作用的粒子,并根据半导体的基本理论推导出相互作用截面。在声子阻力和电场的同时作用下,平均电子运动方程的解给出了声子通量、载流子密度和电动势的分布。模型考虑了热导和电子-声子相互作用的尺寸抑制,但发现其效果不如预期。所建立的模型预测会形成一个电荷载流子密度很高的层,它实际上与掺杂离子的浓度无关。该层可有效拦截从加热纳米岛传播的声子流。由此产生的热电磁场足以解释我们小组之前研究的金属和 sp2 键碳纳米岛薄膜的低压电子发射能力。该模型预测的现象可用于具有非典型参数的热电转换器或局部冷却系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate.

The possible contribution of phonon drag effect to the thermoelectrically sustained potential of a heated nanoisland on a semiconductor surface was estimated in a first principal consideration. We regarded electrons and phonons as interacting particles, and the interaction cross-section was derived from the basic theory of semiconductors. The solution of the equation of motion for average electrons under the simultaneous action of phonon drag and electric field gave the distributions of phonon flux, density of charge carriers and electric potential. Dimensional suppression of thermal conductance and electron-phonon interaction were accounted for but found to be less effective than expected. The developed model predicts the formation of a layer with a high density of charge carriers that is practically independent of the concentration of dopant ions. This layer can effectively intercept the phonon flow propagating from the heated nanoisland. The resulting thermoEMF can have sufficient magnitudes to explain the low-voltage electron emission capability of nanoisland films of metals and sp2-bonded carbon, previously studied by our group. The phenomenon predicted by the model can be used in thermoelectric converters with untypical parameters or in systems for local cooling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信