具有更佳溶液加工性的新型双(4-氨基苯氧基)苯基芳纶共聚物。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-11 DOI:10.3390/nano14201632
Wonseong Song, Amol M Jadhav, Yeonhae Ryu, Soojin Kim, Jaemin Im, Yujeong Jeong, Vanessa, Youngjin Kim, Yerin Sung, Yuri Kim, Hyun Ho Choi
{"title":"具有更佳溶液加工性的新型双(4-氨基苯氧基)苯基芳纶共聚物。","authors":"Wonseong Song, Amol M Jadhav, Yeonhae Ryu, Soojin Kim, Jaemin Im, Yujeong Jeong, Vanessa, Youngjin Kim, Yerin Sung, Yuri Kim, Hyun Ho Choi","doi":"10.3390/nano14201632","DOIUrl":null,"url":null,"abstract":"<p><p>Aramid copolymers have garnered significant interest due to their potential applications in extreme environments such as the aerospace, defense, and automotive industries. Recent developments in aramid copolymers have moved beyond their traditional use in high-strength, high-temperature resistant fibers. There is now a demand for new polymers that can easily be processed into thin films for applications such as electrical insulation films and membranes, utilizing the inherent properties of aramid copolymers. In this work, we demonstrate two novel aramid copolymers that are capable of polymerizing in polar organic solvents with a high degree of polymerization, achieved by incorporating flexible bis(4-aminophenoxy) benzene moieties into the chain backbone. The synthesized MBAB-aramid and PBAB-aramid have enabled the fabrication of exceptionally thin, clear films, with an average molecular weight exceeding 150 kDa and a thickness ranging from 3 to 10 μm. The dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) reveal that the thin films of MBAB-aramid and PBAB-aramid exhibited glass transition temperatures of 270.1 °C and 292.7 °C, respectively, and thermal decomposition temperatures of 449.6 °C and 465.5 °C, respectively. The mechanical tensile analysis of the 5 μm thick films confirmed that the tensile strengths, with elongation at break, are 107.1 MPa (50.7%) for MBAB-aramid and 113.5 MPa (58.4%) for PBAB-aramid, respectively. The thermal and mechanical properties consistently differ between the two polymers, which is attributed to variations in the linearity of the polymer structures and the resulting differences in the density of intermolecular hydrogen bonding and pi-pi interactions. The resulting high-strength, ultra-thin aramid materials offer numerous potential applications in thin films, membranes, and functional coatings across various industries.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Bis(4-aminophenoxy) Benzene-Based Aramid Copolymers with Enhanced Solution Processability.\",\"authors\":\"Wonseong Song, Amol M Jadhav, Yeonhae Ryu, Soojin Kim, Jaemin Im, Yujeong Jeong, Vanessa, Youngjin Kim, Yerin Sung, Yuri Kim, Hyun Ho Choi\",\"doi\":\"10.3390/nano14201632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aramid copolymers have garnered significant interest due to their potential applications in extreme environments such as the aerospace, defense, and automotive industries. Recent developments in aramid copolymers have moved beyond their traditional use in high-strength, high-temperature resistant fibers. There is now a demand for new polymers that can easily be processed into thin films for applications such as electrical insulation films and membranes, utilizing the inherent properties of aramid copolymers. In this work, we demonstrate two novel aramid copolymers that are capable of polymerizing in polar organic solvents with a high degree of polymerization, achieved by incorporating flexible bis(4-aminophenoxy) benzene moieties into the chain backbone. The synthesized MBAB-aramid and PBAB-aramid have enabled the fabrication of exceptionally thin, clear films, with an average molecular weight exceeding 150 kDa and a thickness ranging from 3 to 10 μm. The dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) reveal that the thin films of MBAB-aramid and PBAB-aramid exhibited glass transition temperatures of 270.1 °C and 292.7 °C, respectively, and thermal decomposition temperatures of 449.6 °C and 465.5 °C, respectively. The mechanical tensile analysis of the 5 μm thick films confirmed that the tensile strengths, with elongation at break, are 107.1 MPa (50.7%) for MBAB-aramid and 113.5 MPa (58.4%) for PBAB-aramid, respectively. The thermal and mechanical properties consistently differ between the two polymers, which is attributed to variations in the linearity of the polymer structures and the resulting differences in the density of intermolecular hydrogen bonding and pi-pi interactions. The resulting high-strength, ultra-thin aramid materials offer numerous potential applications in thin films, membranes, and functional coatings across various industries.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201632\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201632","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

芳纶共聚物因其在航空航天、国防和汽车工业等极端环境中的潜在应用而备受关注。芳纶共聚物的最新发展已超越了其在高强度、耐高温纤维中的传统用途。现在,人们需要利用芳纶共聚物的固有特性,将其轻松加工成薄膜,用于电绝缘薄膜和薄膜等应用领域的新型聚合物。在这项工作中,我们展示了两种新型芳纶共聚物,它们能够在极性有机溶剂中进行高聚合度聚合,这是通过在链主干中加入柔性双(4-氨基苯氧基)苯分子实现的。合成的 MBAB-aramid 和 PBAB-aramid 能够制造出非常薄的透明薄膜,平均分子量超过 150 kDa,厚度在 3 到 10 μm 之间。动态力学分析(DMA)和热重分析(TGA)显示,MBAB-aramid 和 PBAB-aramid 薄膜的玻璃化转变温度分别为 270.1 ℃ 和 292.7 ℃,热分解温度分别为 449.6 ℃ 和 465.5 ℃。5 μm 厚薄膜的机械拉伸分析表明,MBAB-aramid 和 PBAB-aramid 的拉伸强度(断裂伸长率)分别为 107.1 MPa(50.7%)和 113.5 MPa(58.4%)。这两种聚合物的热性能和机械性能始终存在差异,其原因在于聚合物结构的线性度不同,以及由此导致的分子间氢键和π-π相互作用密度的差异。由此产生的高强度、超薄芳纶材料为薄膜、薄膜和功能涂层等各行各业提供了众多潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Bis(4-aminophenoxy) Benzene-Based Aramid Copolymers with Enhanced Solution Processability.

Aramid copolymers have garnered significant interest due to their potential applications in extreme environments such as the aerospace, defense, and automotive industries. Recent developments in aramid copolymers have moved beyond their traditional use in high-strength, high-temperature resistant fibers. There is now a demand for new polymers that can easily be processed into thin films for applications such as electrical insulation films and membranes, utilizing the inherent properties of aramid copolymers. In this work, we demonstrate two novel aramid copolymers that are capable of polymerizing in polar organic solvents with a high degree of polymerization, achieved by incorporating flexible bis(4-aminophenoxy) benzene moieties into the chain backbone. The synthesized MBAB-aramid and PBAB-aramid have enabled the fabrication of exceptionally thin, clear films, with an average molecular weight exceeding 150 kDa and a thickness ranging from 3 to 10 μm. The dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) reveal that the thin films of MBAB-aramid and PBAB-aramid exhibited glass transition temperatures of 270.1 °C and 292.7 °C, respectively, and thermal decomposition temperatures of 449.6 °C and 465.5 °C, respectively. The mechanical tensile analysis of the 5 μm thick films confirmed that the tensile strengths, with elongation at break, are 107.1 MPa (50.7%) for MBAB-aramid and 113.5 MPa (58.4%) for PBAB-aramid, respectively. The thermal and mechanical properties consistently differ between the two polymers, which is attributed to variations in the linearity of the polymer structures and the resulting differences in the density of intermolecular hydrogen bonding and pi-pi interactions. The resulting high-strength, ultra-thin aramid materials offer numerous potential applications in thin films, membranes, and functional coatings across various industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信