Patricia Lorena Dulf, Camelia Alexandra Coadă, Adrian Florea, Remus Moldovan, Ioana Baldea, Daniel Vasile Dulf, Dan Blendea, Luminita David, Bianca Moldovan, Valentina Ioana Morosan, Sergiu Macavei, Gabriela Adriana Filip
{"title":"多柔比星掺入金纳米粒子:关于其对大鼠心脏组织影响的体内研究。","authors":"Patricia Lorena Dulf, Camelia Alexandra Coadă, Adrian Florea, Remus Moldovan, Ioana Baldea, Daniel Vasile Dulf, Dan Blendea, Luminita David, Bianca Moldovan, Valentina Ioana Morosan, Sergiu Macavei, Gabriela Adriana Filip","doi":"10.3390/nano14201647","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (Au-NPs) have been explored as potential vectors for enhancing the antitumor efficacy of doxorubicin (DOX) while minimizing its cardiotoxic effects. However, the impacts of DOX Au-NPs on cardiac function and oxidative stress remain inadequately understood. This study aimed to explore the effects of DOX Au-NPs in comparison to free DOX, focusing on oxidative stress markers, inflammation, ultrastructural changes, and cardiac function. Male rats were divided into the following four groups: control, citrate Au-NPs, DOX, and DOX Au-NPs. Cardiac function was assessed using echocardiography, and oxidative stress was evaluated through Nrf2, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, and the GSH/GSSG ratio. The ultrastructure of cardiac tissue was assessed by transmission electron microscopy (TEM). Rats treated with DOX Au-NPs exhibited significant cardiac dysfunction, as indicated by a reduction in fractional shortening and ejection fraction. Oxidative stress markers, including elevated MDA levels and a reduced GSH/GSSG ratio, were significantly worse in the DOX Au-NP group. SOD levels decreased, indicating compromised antioxidant defenses. Citrate Au-NPs also caused some alterations in cardiac function and ultrastructure but without other molecular alterations. DOX Au-NPs failed to mitigate cardiotoxicity, instead exacerbating oxidative stress and cardiac dysfunction. DOX Au-NPs possess cardiotoxic effects, necessitating further investigation into alternative nanoparticle formulations or therapeutic combinations to ensure both efficacy and safety in cancer treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Doxorubicin Incorporation into Gold Nanoparticles: An In Vivo Study of Its Effects on Cardiac Tissue in Rats.\",\"authors\":\"Patricia Lorena Dulf, Camelia Alexandra Coadă, Adrian Florea, Remus Moldovan, Ioana Baldea, Daniel Vasile Dulf, Dan Blendea, Luminita David, Bianca Moldovan, Valentina Ioana Morosan, Sergiu Macavei, Gabriela Adriana Filip\",\"doi\":\"10.3390/nano14201647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold nanoparticles (Au-NPs) have been explored as potential vectors for enhancing the antitumor efficacy of doxorubicin (DOX) while minimizing its cardiotoxic effects. However, the impacts of DOX Au-NPs on cardiac function and oxidative stress remain inadequately understood. This study aimed to explore the effects of DOX Au-NPs in comparison to free DOX, focusing on oxidative stress markers, inflammation, ultrastructural changes, and cardiac function. Male rats were divided into the following four groups: control, citrate Au-NPs, DOX, and DOX Au-NPs. Cardiac function was assessed using echocardiography, and oxidative stress was evaluated through Nrf2, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, and the GSH/GSSG ratio. The ultrastructure of cardiac tissue was assessed by transmission electron microscopy (TEM). Rats treated with DOX Au-NPs exhibited significant cardiac dysfunction, as indicated by a reduction in fractional shortening and ejection fraction. Oxidative stress markers, including elevated MDA levels and a reduced GSH/GSSG ratio, were significantly worse in the DOX Au-NP group. SOD levels decreased, indicating compromised antioxidant defenses. Citrate Au-NPs also caused some alterations in cardiac function and ultrastructure but without other molecular alterations. DOX Au-NPs failed to mitigate cardiotoxicity, instead exacerbating oxidative stress and cardiac dysfunction. DOX Au-NPs possess cardiotoxic effects, necessitating further investigation into alternative nanoparticle formulations or therapeutic combinations to ensure both efficacy and safety in cancer treatment.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201647\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201647","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Doxorubicin Incorporation into Gold Nanoparticles: An In Vivo Study of Its Effects on Cardiac Tissue in Rats.
Gold nanoparticles (Au-NPs) have been explored as potential vectors for enhancing the antitumor efficacy of doxorubicin (DOX) while minimizing its cardiotoxic effects. However, the impacts of DOX Au-NPs on cardiac function and oxidative stress remain inadequately understood. This study aimed to explore the effects of DOX Au-NPs in comparison to free DOX, focusing on oxidative stress markers, inflammation, ultrastructural changes, and cardiac function. Male rats were divided into the following four groups: control, citrate Au-NPs, DOX, and DOX Au-NPs. Cardiac function was assessed using echocardiography, and oxidative stress was evaluated through Nrf2, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, and the GSH/GSSG ratio. The ultrastructure of cardiac tissue was assessed by transmission electron microscopy (TEM). Rats treated with DOX Au-NPs exhibited significant cardiac dysfunction, as indicated by a reduction in fractional shortening and ejection fraction. Oxidative stress markers, including elevated MDA levels and a reduced GSH/GSSG ratio, were significantly worse in the DOX Au-NP group. SOD levels decreased, indicating compromised antioxidant defenses. Citrate Au-NPs also caused some alterations in cardiac function and ultrastructure but without other molecular alterations. DOX Au-NPs failed to mitigate cardiotoxicity, instead exacerbating oxidative stress and cardiac dysfunction. DOX Au-NPs possess cardiotoxic effects, necessitating further investigation into alternative nanoparticle formulations or therapeutic combinations to ensure both efficacy and safety in cancer treatment.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.