Bin Wang , Shuqi Feng , Yixuan Jiang , Yufei Tang , Yi Man , Na Wei , Lin Xiang
{"title":"巨噬细胞的早期抗炎极化可改善小鼠手术后的炎症和钛植入物周围的骨结合。","authors":"Bin Wang , Shuqi Feng , Yixuan Jiang , Yufei Tang , Yi Man , Na Wei , Lin Xiang","doi":"10.1016/j.molimm.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Dental implants are considered a superior option for the replacement of missing teeth. However, the invasive nature of the surgical procedure often results in significant postoperative inflammation, and the prolonged healing period of 3–6 months presents a notable disadvantage. High mobility group box 1 (HMGB1) is a critical mediator of acute inflammation following surgical injury, which can hinder the onset of osseointegration. This study aims to examine whether the inhibition of HMGB1 can mitigate acute inflammation and subsequently enhance osseointegration. The findings indicate that HMGB1 inhibition markedly reduces inflammation and promotes bone repair in murine models. Further in vitro investigations into the regulatory mechanisms of HMGB1 in macrophages reveal its role in increasing Yes-associated protein (YAP) activity, which contributes to pro-inflammatory polarization. Additionally, conditioned media derived from macrophages influenced by HMGB1 significantly impair the migratory and osteogenic capabilities of bone marrow-derived mesenchymal stem cells, which are essential for bone regeneration. In vivo experiments further validate that the administration of exogenous HMGB1 exacerbates postoperative acute inflammation and obstructs osseointegration. The study concludes that inhibiting HMGB1 fosters an anti-inflammatory polarization of macrophages, leading to diminished postoperative acute inflammation and expedited osseointegration around dental implants in mice.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"175 ","pages":"Pages 155-163"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early anti-inflammatory polarization of macrophages ameliorates post-surgical inflammation and osseointegration around titanium implants in mice\",\"authors\":\"Bin Wang , Shuqi Feng , Yixuan Jiang , Yufei Tang , Yi Man , Na Wei , Lin Xiang\",\"doi\":\"10.1016/j.molimm.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dental implants are considered a superior option for the replacement of missing teeth. However, the invasive nature of the surgical procedure often results in significant postoperative inflammation, and the prolonged healing period of 3–6 months presents a notable disadvantage. High mobility group box 1 (HMGB1) is a critical mediator of acute inflammation following surgical injury, which can hinder the onset of osseointegration. This study aims to examine whether the inhibition of HMGB1 can mitigate acute inflammation and subsequently enhance osseointegration. The findings indicate that HMGB1 inhibition markedly reduces inflammation and promotes bone repair in murine models. Further in vitro investigations into the regulatory mechanisms of HMGB1 in macrophages reveal its role in increasing Yes-associated protein (YAP) activity, which contributes to pro-inflammatory polarization. Additionally, conditioned media derived from macrophages influenced by HMGB1 significantly impair the migratory and osteogenic capabilities of bone marrow-derived mesenchymal stem cells, which are essential for bone regeneration. In vivo experiments further validate that the administration of exogenous HMGB1 exacerbates postoperative acute inflammation and obstructs osseointegration. The study concludes that inhibiting HMGB1 fosters an anti-inflammatory polarization of macrophages, leading to diminished postoperative acute inflammation and expedited osseointegration around dental implants in mice.</div></div>\",\"PeriodicalId\":18938,\"journal\":{\"name\":\"Molecular immunology\",\"volume\":\"175 \",\"pages\":\"Pages 155-163\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161589024001846\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024001846","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Early anti-inflammatory polarization of macrophages ameliorates post-surgical inflammation and osseointegration around titanium implants in mice
Dental implants are considered a superior option for the replacement of missing teeth. However, the invasive nature of the surgical procedure often results in significant postoperative inflammation, and the prolonged healing period of 3–6 months presents a notable disadvantage. High mobility group box 1 (HMGB1) is a critical mediator of acute inflammation following surgical injury, which can hinder the onset of osseointegration. This study aims to examine whether the inhibition of HMGB1 can mitigate acute inflammation and subsequently enhance osseointegration. The findings indicate that HMGB1 inhibition markedly reduces inflammation and promotes bone repair in murine models. Further in vitro investigations into the regulatory mechanisms of HMGB1 in macrophages reveal its role in increasing Yes-associated protein (YAP) activity, which contributes to pro-inflammatory polarization. Additionally, conditioned media derived from macrophages influenced by HMGB1 significantly impair the migratory and osteogenic capabilities of bone marrow-derived mesenchymal stem cells, which are essential for bone regeneration. In vivo experiments further validate that the administration of exogenous HMGB1 exacerbates postoperative acute inflammation and obstructs osseointegration. The study concludes that inhibiting HMGB1 fosters an anti-inflammatory polarization of macrophages, leading to diminished postoperative acute inflammation and expedited osseointegration around dental implants in mice.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.