miR-6747-3p的上调通过靶向BCL11A影响β地中海贫血症患者的红细胞系发育并诱导胎儿血红蛋白的表达。

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-01-01 Epub Date: 2024-10-25 DOI:10.3892/mmr.2024.13372
Aixiang Lv, Meihuan Chen, Siwen Zhang, Wantong Zhao, Jingmin Li, Siyang Lin, Yanping Zheng, Na Lin, Liangpu Xu, Hailong Huang
{"title":"miR-6747-3p的上调通过靶向BCL11A影响β地中海贫血症患者的红细胞系发育并诱导胎儿血红蛋白的表达。","authors":"Aixiang Lv, Meihuan Chen, Siwen Zhang, Wantong Zhao, Jingmin Li, Siyang Lin, Yanping Zheng, Na Lin, Liangpu Xu, Hailong Huang","doi":"10.3892/mmr.2024.13372","DOIUrl":null,"url":null,"abstract":"<p><p>In β‑thalassemia, excessive α‑globin chain impedes the normal development of red blood cells resulting in anemia. Numerous miRNAs, including miR‑6747‑3p, are aberrantly expressed in β‑thalassemia major (β‑TM), but there are no reports on the mechanism of miR‑6747‑3p in regulating red blood cell lineage development and fetal hemoglobin (HbF) expression. In the present study, RT‑qPCR was utilized to confirm miR‑6747‑3p expression in patients with β‑TM and the healthy controls. Electrotransfection was employed to introduce the miR‑6747‑3p mimic and inhibitor in both HUDEP‑2 and K562 cells, and red blood cell lineage development was evaluated by CCK‑8 assay, flow cytometry, Wright‑Giemsa staining and Benzidine blue staining. B‑cell lymphoma/leukemia 11A (BCL11A) was selected as a candidate target gene of miR‑6747‑3p for further validation through FISH assay, dual luciferase assay and Western blotting. The results indicated that miR‑6747‑3p expression was notably higher in patients with β‑TM compared with healthy controls and was positively related to HbF levels. Functionally, miR‑6747‑3p overexpression resulted in the hindrance of cell proliferation, promotion of cell apoptosis, facilitation of cellular erythroid differentiation and γ‑globin expression in HUDEP‑2 and K562 cells. Mechanistically, miR‑6747‑3p could specifically bind to the 546‑552 loci of BCL11A 3'‑UTR and induce γ‑globin expression. These data indicate that upregulation of miR‑6747‑3p affects red blood cell lineage development and induces HbF expression by targeting BCL11A in β‑thalassemia, highlighting miR‑6747‑3p as a potential molecular target for β‑thalassemia therapy.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Upregulation of miR‑6747‑3p affects red blood cell lineage development and induces fetal hemoglobin expression by targeting BCL11A in β‑thalassemia.\",\"authors\":\"Aixiang Lv, Meihuan Chen, Siwen Zhang, Wantong Zhao, Jingmin Li, Siyang Lin, Yanping Zheng, Na Lin, Liangpu Xu, Hailong Huang\",\"doi\":\"10.3892/mmr.2024.13372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In β‑thalassemia, excessive α‑globin chain impedes the normal development of red blood cells resulting in anemia. Numerous miRNAs, including miR‑6747‑3p, are aberrantly expressed in β‑thalassemia major (β‑TM), but there are no reports on the mechanism of miR‑6747‑3p in regulating red blood cell lineage development and fetal hemoglobin (HbF) expression. In the present study, RT‑qPCR was utilized to confirm miR‑6747‑3p expression in patients with β‑TM and the healthy controls. Electrotransfection was employed to introduce the miR‑6747‑3p mimic and inhibitor in both HUDEP‑2 and K562 cells, and red blood cell lineage development was evaluated by CCK‑8 assay, flow cytometry, Wright‑Giemsa staining and Benzidine blue staining. B‑cell lymphoma/leukemia 11A (BCL11A) was selected as a candidate target gene of miR‑6747‑3p for further validation through FISH assay, dual luciferase assay and Western blotting. The results indicated that miR‑6747‑3p expression was notably higher in patients with β‑TM compared with healthy controls and was positively related to HbF levels. Functionally, miR‑6747‑3p overexpression resulted in the hindrance of cell proliferation, promotion of cell apoptosis, facilitation of cellular erythroid differentiation and γ‑globin expression in HUDEP‑2 and K562 cells. Mechanistically, miR‑6747‑3p could specifically bind to the 546‑552 loci of BCL11A 3'‑UTR and induce γ‑globin expression. These data indicate that upregulation of miR‑6747‑3p affects red blood cell lineage development and induces HbF expression by targeting BCL11A in β‑thalassemia, highlighting miR‑6747‑3p as a potential molecular target for β‑thalassemia therapy.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2024.13372\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13372","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在β地中海贫血症中,过多的α-球蛋白链阻碍了红细胞的正常发育,导致贫血。包括 miR-6747-3p 在内的许多 miRNA 在重型β-地中海贫血(β-TM)中异常表达,但目前还没有关于 miR-6747-3p 调节红细胞系发育和胎儿血红蛋白(HbF)表达机制的报道。本研究利用 RT-qPCR 技术确认了 miR-6747-3p 在β-TM 患者和健康对照组中的表达。通过电转染在 HUDEP-2 和 K562 细胞中引入 miR-6747-3p 模拟物和抑制剂,并通过 CCK-8 检测法、流式细胞术、Wright-Giemsa 染色法和联苯胺蓝染色法评估红细胞系的发育情况。B 细胞淋巴瘤/白血病 11A(BCL11A)被选为 miR-6747-3p 的候选靶基因,并通过 FISH 检测、双荧光素酶检测和 Western 印迹进一步验证。结果表明,与健康对照组相比,β-TM 患者的 miR-6747-3p 表达明显升高,且与 HbF 水平呈正相关。在功能上,miR-6747-3p 过表达会阻碍细胞增殖、促进细胞凋亡、促进红细胞分化以及 HUDEP-2 和 K562 细胞中 γ- 球蛋白的表达。从机理上讲,miR-6747-3p 可特异性结合 BCL11A 3'-UTR 的 546-552 位点,诱导γ-球蛋白的表达。这些数据表明,miR-6747-3p 的上调会影响β-地中海贫血症患者的红细胞系发育,并通过靶向 BCL11A 诱导 HbF 的表达,这突出表明 miR-6747-3p 是治疗β-地中海贫血症的潜在分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upregulation of miR‑6747‑3p affects red blood cell lineage development and induces fetal hemoglobin expression by targeting BCL11A in β‑thalassemia.

In β‑thalassemia, excessive α‑globin chain impedes the normal development of red blood cells resulting in anemia. Numerous miRNAs, including miR‑6747‑3p, are aberrantly expressed in β‑thalassemia major (β‑TM), but there are no reports on the mechanism of miR‑6747‑3p in regulating red blood cell lineage development and fetal hemoglobin (HbF) expression. In the present study, RT‑qPCR was utilized to confirm miR‑6747‑3p expression in patients with β‑TM and the healthy controls. Electrotransfection was employed to introduce the miR‑6747‑3p mimic and inhibitor in both HUDEP‑2 and K562 cells, and red blood cell lineage development was evaluated by CCK‑8 assay, flow cytometry, Wright‑Giemsa staining and Benzidine blue staining. B‑cell lymphoma/leukemia 11A (BCL11A) was selected as a candidate target gene of miR‑6747‑3p for further validation through FISH assay, dual luciferase assay and Western blotting. The results indicated that miR‑6747‑3p expression was notably higher in patients with β‑TM compared with healthy controls and was positively related to HbF levels. Functionally, miR‑6747‑3p overexpression resulted in the hindrance of cell proliferation, promotion of cell apoptosis, facilitation of cellular erythroid differentiation and γ‑globin expression in HUDEP‑2 and K562 cells. Mechanistically, miR‑6747‑3p could specifically bind to the 546‑552 loci of BCL11A 3'‑UTR and induce γ‑globin expression. These data indicate that upregulation of miR‑6747‑3p affects red blood cell lineage development and induces HbF expression by targeting BCL11A in β‑thalassemia, highlighting miR‑6747‑3p as a potential molecular target for β‑thalassemia therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信