促炎性巨噬细胞对异质工业多壁碳纳米管的生物降解。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-10 DOI:10.3390/nano14201616
Alexander G Masyutin, Ekaterina K Tarasova, Daniil A Samsonov, Galina E Onishchenko, Maria V Erokhina
{"title":"促炎性巨噬细胞对异质工业多壁碳纳米管的生物降解。","authors":"Alexander G Masyutin, Ekaterina K Tarasova, Daniil A Samsonov, Galina E Onishchenko, Maria V Erokhina","doi":"10.3390/nano14201616","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial multi-walled carbon nanotubes (ig-MWCNTs) make up the majority of carbon nanomaterials, and human contact with them is the most probable. At the same time, the biodegradation of ig-MWCNTs by phagocytes has not been studied-existing articles consider mainly laboratory-grade/functionalized MWCNTs (l-MWCNTs), in contrast to which ig-MWCNTs are a highly heterogeneous nanomaterial in terms of morphological and physicochemical characteristics. The aim of the present study was to analyze ig-MWCNTs' biodegradation by proinflammatory macrophages. We focused on both extra- and intracellular ig-MWCNTs' degradation. We analyzed biodegradation of two different types of ig-MWCNTs by human (THP-1) and murine (RAW264.7) macrophages. After 10 days of incubation, we studied nanoparticle localization within cells; isolated intra- and extracellular ig-MWCNTs were used for quantitative analysis. Ultrastructural and morphometric analysis were performed using transmission electron microscopy; electron diffraction was used for nanotube identification. To estimate chemical alterations, energy-dispersive X-ray spectroscopy and Raman spectroscopy were used. The study showed that both intra- and extracellular ig-MWCNTs undergo almost complete biodegradation, but in different ways: intracellular nanotubes become perforated and reduce to graphene flakes, while extracellular become thinner. We believe that the demonstrated variability in the destruction of ig-MWCNTs by cells suggests the possibility of creating nanomaterials with controlled biodegradation properties.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510322/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of Heterogeneous Industrial Multi-Walled Carbon Nanotubes by Pro-Inflammatory Macrophages.\",\"authors\":\"Alexander G Masyutin, Ekaterina K Tarasova, Daniil A Samsonov, Galina E Onishchenko, Maria V Erokhina\",\"doi\":\"10.3390/nano14201616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial multi-walled carbon nanotubes (ig-MWCNTs) make up the majority of carbon nanomaterials, and human contact with them is the most probable. At the same time, the biodegradation of ig-MWCNTs by phagocytes has not been studied-existing articles consider mainly laboratory-grade/functionalized MWCNTs (l-MWCNTs), in contrast to which ig-MWCNTs are a highly heterogeneous nanomaterial in terms of morphological and physicochemical characteristics. The aim of the present study was to analyze ig-MWCNTs' biodegradation by proinflammatory macrophages. We focused on both extra- and intracellular ig-MWCNTs' degradation. We analyzed biodegradation of two different types of ig-MWCNTs by human (THP-1) and murine (RAW264.7) macrophages. After 10 days of incubation, we studied nanoparticle localization within cells; isolated intra- and extracellular ig-MWCNTs were used for quantitative analysis. Ultrastructural and morphometric analysis were performed using transmission electron microscopy; electron diffraction was used for nanotube identification. To estimate chemical alterations, energy-dispersive X-ray spectroscopy and Raman spectroscopy were used. The study showed that both intra- and extracellular ig-MWCNTs undergo almost complete biodegradation, but in different ways: intracellular nanotubes become perforated and reduce to graphene flakes, while extracellular become thinner. We believe that the demonstrated variability in the destruction of ig-MWCNTs by cells suggests the possibility of creating nanomaterials with controlled biodegradation properties.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510322/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201616\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201616","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工业用多壁碳纳米管(ig-MWCNTs)占碳纳米材料的绝大部分,人类最有可能接触到它们。与此同时,ig-MWCNTs 在吞噬细胞中的生物降解尚未被研究--现有文章主要考虑的是实验室级/功能化的 MWCNTs(l-MWCNTs),而 ig-MWCNTs 在形态和理化特性方面是一种高度异构的纳米材料。本研究旨在分析促炎巨噬细胞对 ig-MWCNTs 的生物降解作用。我们重点研究了细胞外和细胞内的 ig-MWCNTs 降解。我们分析了两种不同类型的 ig-MWCNTs 在人(THP-1)和鼠(RAW264.7)巨噬细胞中的生物降解情况。培养 10 天后,我们研究了纳米粒子在细胞内的定位情况;分离出的细胞内和细胞外 ig-MWCNTs 被用于定量分析。使用透射电子显微镜进行了超微结构和形态计量分析;使用电子衍射进行了纳米管鉴定。为了估计化学变化,使用了能量色散 X 射线光谱和拉曼光谱。研究表明,细胞内和细胞外的 ig-MWCNT 几乎都会发生生物降解,但降解的方式不同:细胞内的纳米管会穿孔并还原成石墨烯薄片,而细胞外的纳米管则会变细。我们认为,细胞在破坏 ig-MWCNTs 过程中表现出的差异性表明,有可能创造出具有可控生物降解特性的纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradation of Heterogeneous Industrial Multi-Walled Carbon Nanotubes by Pro-Inflammatory Macrophages.

Industrial multi-walled carbon nanotubes (ig-MWCNTs) make up the majority of carbon nanomaterials, and human contact with them is the most probable. At the same time, the biodegradation of ig-MWCNTs by phagocytes has not been studied-existing articles consider mainly laboratory-grade/functionalized MWCNTs (l-MWCNTs), in contrast to which ig-MWCNTs are a highly heterogeneous nanomaterial in terms of morphological and physicochemical characteristics. The aim of the present study was to analyze ig-MWCNTs' biodegradation by proinflammatory macrophages. We focused on both extra- and intracellular ig-MWCNTs' degradation. We analyzed biodegradation of two different types of ig-MWCNTs by human (THP-1) and murine (RAW264.7) macrophages. After 10 days of incubation, we studied nanoparticle localization within cells; isolated intra- and extracellular ig-MWCNTs were used for quantitative analysis. Ultrastructural and morphometric analysis were performed using transmission electron microscopy; electron diffraction was used for nanotube identification. To estimate chemical alterations, energy-dispersive X-ray spectroscopy and Raman spectroscopy were used. The study showed that both intra- and extracellular ig-MWCNTs undergo almost complete biodegradation, but in different ways: intracellular nanotubes become perforated and reduce to graphene flakes, while extracellular become thinner. We believe that the demonstrated variability in the destruction of ig-MWCNTs by cells suggests the possibility of creating nanomaterials with controlled biodegradation properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信