Tam Nguyen, Isabel Spriet, Charlotte Quintens, Lotte Vander Elst, Pham Thi Thanh Ha, Ann Van Schepdael, Erwin Adams
{"title":"门诊外用抗菌药物治疗中使用氟氯西林的分析观点。","authors":"Tam Nguyen, Isabel Spriet, Charlotte Quintens, Lotte Vander Elst, Pham Thi Thanh Ha, Ann Van Schepdael, Erwin Adams","doi":"10.3390/microorganisms12102039","DOIUrl":null,"url":null,"abstract":"<p><p>Although the addition of buffers provides improved stability to flucloxacillin (FLU) solutions, unbuffered solutions are often preferred in clinical practice. The first purpose of this study was to investigate whether a 50 mg/mL solution of FLU in normal saline is stable for 24 h at 33 °C so that it can be applied for outpatient parenteral antimicrobial therapy (OPAT) using portable elastomeric infusion pumps (PEIPs). When the PEIPs were stored in an oven at 33 °C and deflated over 24 h, the volume of the collected solution, pH, and FLU concentration were checked every 4 h. Obtaining better results than expected based on the literature data, other storage conditions, such as refrigeration, room temperature (RT), 37 °C, refrigeration followed by 24 h at 33 °C and 37 °C, and different batches/brands, were also tested. This study confirmed the pronounced effect of temperature on the stability of FLU and also showed the relationship between the stability of FLU and the initial pH of the solution. FLU was quite stable at refrigeration and RT conditions, with more than 99% and 95% remaining. After 24 h at 33 °C, more than 92% of FLU was still present in the solution, while this number decreased to less than 85% when the storage temperature reached 37 °C. The remaining percentage was found to be even lower when the solution was stored at 2-8 °C for 6 days, followed by 24 h storage at 33 °C or 37 °C, with losses of 17% and 30%, respectively. The stability of FLU became worse when the initial pH of the solution was lower than 5.9 since the concentration of FLU dropped to less than 90% after 24 h at 33 °C, and a precipitate started to form when the initial pH of the solution was around 5.3. Therefore, FLU in PEIPs could be employed for 24 h if the temperature was ideally not more than 33 °C, while the pH should be not less than 5.9 upon reconstituting the FLU solution.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509857/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Analytical View on the Use of Flucloxacillin for Outpatient Parenteral Antimicrobial Therapy.\",\"authors\":\"Tam Nguyen, Isabel Spriet, Charlotte Quintens, Lotte Vander Elst, Pham Thi Thanh Ha, Ann Van Schepdael, Erwin Adams\",\"doi\":\"10.3390/microorganisms12102039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the addition of buffers provides improved stability to flucloxacillin (FLU) solutions, unbuffered solutions are often preferred in clinical practice. The first purpose of this study was to investigate whether a 50 mg/mL solution of FLU in normal saline is stable for 24 h at 33 °C so that it can be applied for outpatient parenteral antimicrobial therapy (OPAT) using portable elastomeric infusion pumps (PEIPs). When the PEIPs were stored in an oven at 33 °C and deflated over 24 h, the volume of the collected solution, pH, and FLU concentration were checked every 4 h. Obtaining better results than expected based on the literature data, other storage conditions, such as refrigeration, room temperature (RT), 37 °C, refrigeration followed by 24 h at 33 °C and 37 °C, and different batches/brands, were also tested. This study confirmed the pronounced effect of temperature on the stability of FLU and also showed the relationship between the stability of FLU and the initial pH of the solution. FLU was quite stable at refrigeration and RT conditions, with more than 99% and 95% remaining. After 24 h at 33 °C, more than 92% of FLU was still present in the solution, while this number decreased to less than 85% when the storage temperature reached 37 °C. The remaining percentage was found to be even lower when the solution was stored at 2-8 °C for 6 days, followed by 24 h storage at 33 °C or 37 °C, with losses of 17% and 30%, respectively. The stability of FLU became worse when the initial pH of the solution was lower than 5.9 since the concentration of FLU dropped to less than 90% after 24 h at 33 °C, and a precipitate started to form when the initial pH of the solution was around 5.3. Therefore, FLU in PEIPs could be employed for 24 h if the temperature was ideally not more than 33 °C, while the pH should be not less than 5.9 upon reconstituting the FLU solution.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms12102039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12102039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
An Analytical View on the Use of Flucloxacillin for Outpatient Parenteral Antimicrobial Therapy.
Although the addition of buffers provides improved stability to flucloxacillin (FLU) solutions, unbuffered solutions are often preferred in clinical practice. The first purpose of this study was to investigate whether a 50 mg/mL solution of FLU in normal saline is stable for 24 h at 33 °C so that it can be applied for outpatient parenteral antimicrobial therapy (OPAT) using portable elastomeric infusion pumps (PEIPs). When the PEIPs were stored in an oven at 33 °C and deflated over 24 h, the volume of the collected solution, pH, and FLU concentration were checked every 4 h. Obtaining better results than expected based on the literature data, other storage conditions, such as refrigeration, room temperature (RT), 37 °C, refrigeration followed by 24 h at 33 °C and 37 °C, and different batches/brands, were also tested. This study confirmed the pronounced effect of temperature on the stability of FLU and also showed the relationship between the stability of FLU and the initial pH of the solution. FLU was quite stable at refrigeration and RT conditions, with more than 99% and 95% remaining. After 24 h at 33 °C, more than 92% of FLU was still present in the solution, while this number decreased to less than 85% when the storage temperature reached 37 °C. The remaining percentage was found to be even lower when the solution was stored at 2-8 °C for 6 days, followed by 24 h storage at 33 °C or 37 °C, with losses of 17% and 30%, respectively. The stability of FLU became worse when the initial pH of the solution was lower than 5.9 since the concentration of FLU dropped to less than 90% after 24 h at 33 °C, and a precipitate started to form when the initial pH of the solution was around 5.3. Therefore, FLU in PEIPs could be employed for 24 h if the temperature was ideally not more than 33 °C, while the pH should be not less than 5.9 upon reconstituting the FLU solution.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.