Tianjun Ma, Ning Xue, Abdul Muhammad, Gang Fang, Jinyao Yan, Rongkun Chen, Jianhai Sun, Xuguang Sun
{"title":"光电探测器的最新进展:从材料到结构和应用。","authors":"Tianjun Ma, Ning Xue, Abdul Muhammad, Gang Fang, Jinyao Yan, Rongkun Chen, Jianhai Sun, Xuguang Sun","doi":"10.3390/mi15101249","DOIUrl":null,"url":null,"abstract":"<p><p>Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509732/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Photodetectors: From Materials to Structures and Applications.\",\"authors\":\"Tianjun Ma, Ning Xue, Abdul Muhammad, Gang Fang, Jinyao Yan, Rongkun Chen, Jianhai Sun, Xuguang Sun\",\"doi\":\"10.3390/mi15101249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101249\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101249","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Recent Progress in Photodetectors: From Materials to Structures and Applications.
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.