{"title":"在 42°Y-X LiTaO3/SiO2/Poly-Si/Si 基底上形成蜂窝状声波晶体,以提高性能并实现微型化。","authors":"Panliang Tang, Hongzhi Pan, Temesgen Bailie Workie, Jia Mi, Jingfu Bao, Ken-Ya Hashimoto","doi":"10.3390/mi15101256","DOIUrl":null,"url":null,"abstract":"<p><p>A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO<sub>2</sub>/poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509270/pdf/","citationCount":"0","resultStr":"{\"title\":\"Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO<sub>3</sub>/SiO<sub>2</sub>/Poly-Si/Si Substrate for Improved Performance and Miniaturization.\",\"authors\":\"Panliang Tang, Hongzhi Pan, Temesgen Bailie Workie, Jia Mi, Jingfu Bao, Ken-Ya Hashimoto\",\"doi\":\"10.3390/mi15101256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO<sub>2</sub>/poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101256\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization.
A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO2/poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.