智能应变传感线的自动制造。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-10-08 DOI:10.3390/mi15101239
Ege Ozgul, Wenxin Zeng, Sameer Sonkusale
{"title":"智能应变传感线的自动制造。","authors":"Ege Ozgul, Wenxin Zeng, Sameer Sonkusale","doi":"10.3390/mi15101239","DOIUrl":null,"url":null,"abstract":"<p><p>With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Fabrication of Smart Strain Sensing Threads.\",\"authors\":\"Ege Ozgul, Wenxin Zeng, Sameer Sonkusale\",\"doi\":\"10.3390/mi15101239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101239\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101239","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

线基传感器具有良好的拉伸性、可缝合性以及可编织成织物的潜力,因此在智能和互联健康应用的可穿戴设备中获得了极大的关注。为了促进可穿戴设备的应用,在制造这些智能线时,关键是要有一种简单可靠的方法来制造这些具有良好性能和一致性的线基传感器。在本文中,我们提出了一种自动螺纹涂层系统,该系统能以受控参数制造螺纹式应变传感器。该平台采用集成传感器,在高度紧凑的结构中控制螺纹的制造,其中包括一个创新的张力传感器和一个闭环热管理系统。利用这一新系统,制备出了测量系数为 1.47、张力灵敏度为 32.64 KΩ/N 的样品线。与手工涂层线相比,机器制造的线具有更好的灵敏度和一致性。制备的应变传感器被制成呼吸传感器贴片和肢体运动贴片,以展示其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Fabrication of Smart Strain Sensing Threads.

With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信