Pengcheng Huang, Peijin Wu, Ziyuan Guo, Zhicheng Ye
{"title":"基于分段同心纳米环与深度学习的 3D 光向传感器","authors":"Pengcheng Huang, Peijin Wu, Ziyuan Guo, Zhicheng Ye","doi":"10.3390/mi15101219","DOIUrl":null,"url":null,"abstract":"<p><p>High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors. However, the current approach to measuring the three-dimensional (3D) incident light direction is unstable. In this paper, we propose a sensor concept capable of discerning the 3D light-direction based on a segmented concentric nanoring structure that is sensitive to both elevation angle (θ) and azimuth angle (ϕ) at a micrometer device scale and is validated through simulations. Through deep learning (DL) analysis and prediction, our simulations reveal that for angle scanning with a step size of 1°, the device can still achieve a detection range of 0∼360° for ϕ and 45°∼90° for θ, with an average accuracy of 0.19°, and DL can further solve some data aliasing problems to expand the sensing range. Our design broadens the angle sensing dimension based on mutual resonance coupling among nanoring segments, and through waveguide implementation or sensor array arrangements, the detection range can be flexibly adjusted to accommodate diverse application scenarios.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509479/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Light-Direction Sensor Based on Segmented Concentric Nanorings Combined with Deep Learning.\",\"authors\":\"Pengcheng Huang, Peijin Wu, Ziyuan Guo, Zhicheng Ye\",\"doi\":\"10.3390/mi15101219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors. However, the current approach to measuring the three-dimensional (3D) incident light direction is unstable. In this paper, we propose a sensor concept capable of discerning the 3D light-direction based on a segmented concentric nanoring structure that is sensitive to both elevation angle (θ) and azimuth angle (ϕ) at a micrometer device scale and is validated through simulations. Through deep learning (DL) analysis and prediction, our simulations reveal that for angle scanning with a step size of 1°, the device can still achieve a detection range of 0∼360° for ϕ and 45°∼90° for θ, with an average accuracy of 0.19°, and DL can further solve some data aliasing problems to expand the sensing range. Our design broadens the angle sensing dimension based on mutual resonance coupling among nanoring segments, and through waveguide implementation or sensor array arrangements, the detection range can be flexibly adjusted to accommodate diverse application scenarios.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101219\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
3D Light-Direction Sensor Based on Segmented Concentric Nanorings Combined with Deep Learning.
High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors. However, the current approach to measuring the three-dimensional (3D) incident light direction is unstable. In this paper, we propose a sensor concept capable of discerning the 3D light-direction based on a segmented concentric nanoring structure that is sensitive to both elevation angle (θ) and azimuth angle (ϕ) at a micrometer device scale and is validated through simulations. Through deep learning (DL) analysis and prediction, our simulations reveal that for angle scanning with a step size of 1°, the device can still achieve a detection range of 0∼360° for ϕ and 45°∼90° for θ, with an average accuracy of 0.19°, and DL can further solve some data aliasing problems to expand the sensing range. Our design broadens the angle sensing dimension based on mutual resonance coupling among nanoring segments, and through waveguide implementation or sensor array arrangements, the detection range can be flexibly adjusted to accommodate diverse application scenarios.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.