尿液中有机代谢物的检测和验证用于诊断透明细胞肾细胞癌

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2024-10-13 DOI:10.3390/metabo14100546
Kiana L Holbrook, George E Quaye, Elizabeth Noriega Landa, Xiaogang Su, Qin Gao, Heinric Williams, Ryan Young, Sabur Badmos, Ahsan Habib, Angelica A Chacon, Wen-Yee Lee
{"title":"尿液中有机代谢物的检测和验证用于诊断透明细胞肾细胞癌","authors":"Kiana L Holbrook, George E Quaye, Elizabeth Noriega Landa, Xiaogang Su, Qin Gao, Heinric Williams, Ryan Young, Sabur Badmos, Ahsan Habib, Angelica A Chacon, Wen-Yee Lee","doi":"10.3390/metabo14100546","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70-80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model.</p><p><strong>Methods: </strong>This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers.</p><p><strong>Results: </strong>The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity.</p><p><strong>Conclusions: </strong>This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study's capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis.\",\"authors\":\"Kiana L Holbrook, George E Quaye, Elizabeth Noriega Landa, Xiaogang Su, Qin Gao, Heinric Williams, Ryan Young, Sabur Badmos, Ahsan Habib, Angelica A Chacon, Wen-Yee Lee\",\"doi\":\"10.3390/metabo14100546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70-80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model.</p><p><strong>Methods: </strong>This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers.</p><p><strong>Results: </strong>The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity.</p><p><strong>Conclusions: </strong>This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study's capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14100546\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14100546","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:透明细胞肾细胞癌(ccRCC)占肾癌病例的大多数,约为 70-80%,通常无症状,直到在腹部非相关成像中偶然发现或处于晚期阶段。目前,肾癌还缺乏标准化的筛查测试,这给疾病管理和改善患者预后带来了挑战。本研究旨在确定ccRCC阳性患者尿液中的ccRCC特异性挥发性有机化合物(VOC),并建立基于尿液VOC的诊断模型:这项研究涉及 233 名接受治疗的 ccRCC 患者和 43 名健康人。VOC分析采用搅拌棒吸附萃取-热脱附气相色谱/质谱联用技术(SBSE-TD-GC/MS)。通过逻辑回归建立了ccRCC诊断模型,对163个ccRCC病例和31个对照组进行了训练,并对70个ccRCC病例和12个对照组进行了验证,最终建立了包含24个挥发性有机化合物标记物的ccRCC诊断模型:结果:研究结果表明诊断效果良好,曲线下面积(AUC)为0.94,灵敏度为86%,特异度为92%:这项研究强调了使用尿液作为可靠的生物样本鉴定ccRCC中挥发性有机化合物生物标志物的可行性。虽然有必要在更大的队列中进行进一步验证,但尽管样本量有限,这项研究区分ccRCC和对照组的能力还是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis.

Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70-80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model.

Methods: This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers.

Results: The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity.

Conclusions: This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study's capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信