不同来源消化物液体馏分的净化--用于此目的的聚合物和陶瓷超滤膜的比较。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Agnieszka Urbanowska
{"title":"不同来源消化物液体馏分的净化--用于此目的的聚合物和陶瓷超滤膜的比较。","authors":"Agnieszka Urbanowska","doi":"10.3390/membranes14100203","DOIUrl":null,"url":null,"abstract":"<p><p>Circular economy, clean technologies, and renewable energy are key to climate protection and modern environmental technology. Recovering water and valuable minerals from the liquid fraction of digestate is in line with this strategy. Digestate, a byproduct of anaerobic methane fermentation in biogas plants, is a potential source of water, minerals for fertilizers, and energy rather than waste. This study examined digestate from municipal and agricultural biogas plants and highlights the need for research on both due to their differences. The use of membrane techniques for water recovery from liquid digestate offers an innovative alternative to conventional methods. This study used standalone membrane filtration and an integrated system to produce water suitable for agricultural use. Ceramic membranes with cut-offs of 1, 5, 15, and 50 kDa and polymeric membranes of polyethersulfone and regenerated cellulose with cut-offs of 10 and 30 kDa were tested. The results showed that the membrane material significantly affects the transport and separation properties. Higher cut-off values increased permeate flux across all membranes. Ceramic membranes were more susceptible to fouling in standalone ultrafiltration, but were more effective in purifying digestate than polymeric membranes. The best results were obtained with a ceramic membrane with a 1 kDa cut-off (for example, for the integrated process and the municipal digestate, the retention rates of COD, BOD<sub>5</sub> and DOC were 69%, 62%, and 75%, respectively).</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Purification of Liquid Fraction of Digestates from Different Origins-Comparison of Polymeric and Ceramic Ultrafiltration Membranes Used for This Purpose.\",\"authors\":\"Agnieszka Urbanowska\",\"doi\":\"10.3390/membranes14100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular economy, clean technologies, and renewable energy are key to climate protection and modern environmental technology. Recovering water and valuable minerals from the liquid fraction of digestate is in line with this strategy. Digestate, a byproduct of anaerobic methane fermentation in biogas plants, is a potential source of water, minerals for fertilizers, and energy rather than waste. This study examined digestate from municipal and agricultural biogas plants and highlights the need for research on both due to their differences. The use of membrane techniques for water recovery from liquid digestate offers an innovative alternative to conventional methods. This study used standalone membrane filtration and an integrated system to produce water suitable for agricultural use. Ceramic membranes with cut-offs of 1, 5, 15, and 50 kDa and polymeric membranes of polyethersulfone and regenerated cellulose with cut-offs of 10 and 30 kDa were tested. The results showed that the membrane material significantly affects the transport and separation properties. Higher cut-off values increased permeate flux across all membranes. Ceramic membranes were more susceptible to fouling in standalone ultrafiltration, but were more effective in purifying digestate than polymeric membranes. The best results were obtained with a ceramic membrane with a 1 kDa cut-off (for example, for the integrated process and the municipal digestate, the retention rates of COD, BOD<sub>5</sub> and DOC were 69%, 62%, and 75%, respectively).</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14100203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14100203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

循环经济、清洁技术和可再生能源是气候保护和现代环保技术的关键。从沼渣的液体部分回收水和有价值的矿物质符合这一战略。沼渣是沼气厂厌氧甲烷发酵的副产品,是水、用于肥料的矿物质和能源的潜在来源,而不是废物。这项研究考察了市政沼气厂和农业沼气厂的沼渣,并强调由于两者的差异,有必要对两者进行研究。使用膜技术从液态沼渣中回收水为传统方法提供了一种创新的替代方法。这项研究使用独立的膜过滤和综合系统来生产适合农业使用的水。对截留分子量为 1、5、15 和 50 kDa 的陶瓷膜以及截留分子量为 10 和 30 kDa 的聚醚砜和再生纤维素聚合物膜进行了测试。结果表明,膜材料对传输和分离性能有很大影响。截留值越高,所有膜的渗透通量越大。陶瓷膜在独立超滤中更容易堵塞,但在净化沼液方面比聚合物膜更有效。使用截流值为 1 kDa 的陶瓷膜可获得最佳效果(例如,在综合工艺和市政沼渣中,COD、BOD5 和 DOC 的截留率分别为 69%、62% 和 75%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purification of Liquid Fraction of Digestates from Different Origins-Comparison of Polymeric and Ceramic Ultrafiltration Membranes Used for This Purpose.

Circular economy, clean technologies, and renewable energy are key to climate protection and modern environmental technology. Recovering water and valuable minerals from the liquid fraction of digestate is in line with this strategy. Digestate, a byproduct of anaerobic methane fermentation in biogas plants, is a potential source of water, minerals for fertilizers, and energy rather than waste. This study examined digestate from municipal and agricultural biogas plants and highlights the need for research on both due to their differences. The use of membrane techniques for water recovery from liquid digestate offers an innovative alternative to conventional methods. This study used standalone membrane filtration and an integrated system to produce water suitable for agricultural use. Ceramic membranes with cut-offs of 1, 5, 15, and 50 kDa and polymeric membranes of polyethersulfone and regenerated cellulose with cut-offs of 10 and 30 kDa were tested. The results showed that the membrane material significantly affects the transport and separation properties. Higher cut-off values increased permeate flux across all membranes. Ceramic membranes were more susceptible to fouling in standalone ultrafiltration, but were more effective in purifying digestate than polymeric membranes. The best results were obtained with a ceramic membrane with a 1 kDa cut-off (for example, for the integrated process and the municipal digestate, the retention rates of COD, BOD5 and DOC were 69%, 62%, and 75%, respectively).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信