Ahmad Fallatah, Mohammed Kuku, Laila Alqahtani, Almqdad Bubshait, Noha S Almutairi, Sonal Padalkar, Abdullah M Alotaibi
{"title":"形态对高效光电化学活性和制氢的氧化锌纳米结构的作用。","authors":"Ahmad Fallatah, Mohammed Kuku, Laila Alqahtani, Almqdad Bubshait, Noha S Almutairi, Sonal Padalkar, Abdullah M Alotaibi","doi":"10.3390/ma17205135","DOIUrl":null,"url":null,"abstract":"<p><p>Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO<sub>3</sub>)<sub>2</sub>) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH<sub>4</sub>F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509430/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Morphology on Zinc Oxide Nanostructures for Efficient Photoelectrochemical Activity and Hydrogen Production.\",\"authors\":\"Ahmad Fallatah, Mohammed Kuku, Laila Alqahtani, Almqdad Bubshait, Noha S Almutairi, Sonal Padalkar, Abdullah M Alotaibi\",\"doi\":\"10.3390/ma17205135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO<sub>3</sub>)<sub>2</sub>) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH<sub>4</sub>F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509430/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17205135\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17205135","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
当今的能源生产在很大程度上依赖于光催化领域,许多传统的能源生产策略现已被将太阳能转化为化学能或热能以用于各种能源相关应用所取代。全球变暖表明,迫切需要摒弃不可再生能源,因此,人们强调通过研究各种材料系统和材料组合来创造最佳光催化剂,以实现有效的太阳能转换。本研究通过利用电沉积和封盖剂来控制不同氧化锌面的生长速度,并获得定义明确的纳米结构和取向,从而探索形态变化对氧化锌纳米结构光电化学活性的影响。使用硝酸锌(Zn (NO3)2)槽在 70 °C、-1.0 V 的外加电位下在铟锡氧化物玻璃(ITO)基底上电沉积氧化锌纳米结构。硝酸锌槽中添加了乙二胺(EDA)或氟化铵(NH4F)作为封端剂。对由此产生的形态受控氧化锌纳米结构的光电化学(PEC)能力进行的广泛评估和表征证实,改变氧化锌的形态可对 PEC 特性产生积极影响。
Role of Morphology on Zinc Oxide Nanostructures for Efficient Photoelectrochemical Activity and Hydrogen Production.
Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO3)2) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH4F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.