从鲍鱼内脏和渔业副产品中提取的胰蛋白酶水解物的抗氧化作用及其纯化的生物活性肽的血管紧张素-I 转换酶 (ACE) 抑制活性。

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2024-10-07 DOI:10.3390/md22100461
Jun-Ho Heo, Eun-A Kim, Nalae Kang, Seong-Yeong Heo, Ginnae Ahn, Soo-Jin Heo
{"title":"从鲍鱼内脏和渔业副产品中提取的胰蛋白酶水解物的抗氧化作用及其纯化的生物活性肽的血管紧张素-I 转换酶 (ACE) 抑制活性。","authors":"Jun-Ho Heo, Eun-A Kim, Nalae Kang, Seong-Yeong Heo, Ginnae Ahn, Soo-Jin Heo","doi":"10.3390/md22100461","DOIUrl":null,"url":null,"abstract":"<p><p>Abalone is a rich source of nutrition, the viscera of which are discarded as by-product during processing. This study explored the biological activities of peptides derived from abalone viscera (AV). Trypsin-hydrolysate of AV (TAV) was purified into three fractions using a Sephadex G-10 column. Nine bioactive peptides (VAR, NYER, LGPY, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, LDW, and NLGEW) derived from TAV-F2 were sequenced. LGPY, VTPGLQY, LGEW, LDW, and NLGEW exhibited antioxidant properties, with IC<sub>50</sub> values of 0.213, 0.297, 0.289, 0.363, and 0.303 mg/mL, respectively. In vitro analysis determined that the peptides VAR, NYER, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, and NLGEW inhibited ACE, with IC<sub>50</sub> values of 0.104, 0.107, 0.023, 0.023, 0.165, 0.004, and 0.146 mg/mL, respectively. The binding interactions of ACE-bioactive peptide complexes were investigated using docking analysis with the ZDCOK server. VTPGLQT interacted with HIS513 and TYR523, and QLQFPVGR interacted with HIS353, ALA354, GLU384, HIS513, and TYR523, contributing to the inhibition of ACE activity. They also interacted with amino acids that contribute to stability by binding to zinc ions. QFPVGR may form complexes with ACE surface sites, suggesting indirect inhibition. These results indicate that AV is a potential source of bioactive peptides with dual antioxidant and anti-hypertensive dual effects.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509546/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Antioxidant Effects of Trypsin-Hydrolysate Derived from Abalone Viscera and Fishery By-Products, and the Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Its Purified Bioactive Peptides.\",\"authors\":\"Jun-Ho Heo, Eun-A Kim, Nalae Kang, Seong-Yeong Heo, Ginnae Ahn, Soo-Jin Heo\",\"doi\":\"10.3390/md22100461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abalone is a rich source of nutrition, the viscera of which are discarded as by-product during processing. This study explored the biological activities of peptides derived from abalone viscera (AV). Trypsin-hydrolysate of AV (TAV) was purified into three fractions using a Sephadex G-10 column. Nine bioactive peptides (VAR, NYER, LGPY, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, LDW, and NLGEW) derived from TAV-F2 were sequenced. LGPY, VTPGLQY, LGEW, LDW, and NLGEW exhibited antioxidant properties, with IC<sub>50</sub> values of 0.213, 0.297, 0.289, 0.363, and 0.303 mg/mL, respectively. In vitro analysis determined that the peptides VAR, NYER, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, and NLGEW inhibited ACE, with IC<sub>50</sub> values of 0.104, 0.107, 0.023, 0.023, 0.165, 0.004, and 0.146 mg/mL, respectively. The binding interactions of ACE-bioactive peptide complexes were investigated using docking analysis with the ZDCOK server. VTPGLQT interacted with HIS513 and TYR523, and QLQFPVGR interacted with HIS353, ALA354, GLU384, HIS513, and TYR523, contributing to the inhibition of ACE activity. They also interacted with amino acids that contribute to stability by binding to zinc ions. QFPVGR may form complexes with ACE surface sites, suggesting indirect inhibition. These results indicate that AV is a potential source of bioactive peptides with dual antioxidant and anti-hypertensive dual effects.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"22 10\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md22100461\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

鲍鱼营养丰富,其内脏在加工过程中作为副产品被丢弃。本研究探讨了从鲍鱼内脏(AV)中提取的肽的生物活性。使用 Sephadex G-10 色谱柱将鲍鱼内脏的胰蛋白酶水解物(TAV)纯化成三个馏分。对从 TAV-F2 提取的九种生物活性肽(VAR、NYER、LGPY、VTPGLQY、QFPVGR、LGEW、QLQFPVGR、LDW 和 NLGEW)进行了测序。LGPY、VTPGLQY、LGEW、LDW 和 NLGEW 具有抗氧化特性,其 IC50 值分别为 0.213、0.297、0.289、0.363 和 0.303 mg/mL。体外分析表明,肽 VAR、NYER、VTPGLQY、QFPVGR、LGEW、QLQFPVGR 和 NLGEW 可抑制 ACE,其 IC50 值分别为 0.104、0.107、0.023、0.023、0.165、0.004 和 0.146 毫克/毫升。利用 ZDCOK 服务器的对接分析研究了 ACE-生物活性肽复合物的结合相互作用。VTPGLQT与HIS513和TYR523相互作用,QLQFPVGR与HIS353、ALA354、GLU384、HIS513和TYR523相互作用,从而抑制了ACE的活性。它们还与通过与锌离子结合而提高稳定性的氨基酸相互作用。QFPVGR 可能与 ACE 表面位点形成复合物,这表明存在间接抑制作用。这些结果表明,AV 是具有抗氧化和抗高血压双重作用的生物活性肽的潜在来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Antioxidant Effects of Trypsin-Hydrolysate Derived from Abalone Viscera and Fishery By-Products, and the Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Its Purified Bioactive Peptides.

Abalone is a rich source of nutrition, the viscera of which are discarded as by-product during processing. This study explored the biological activities of peptides derived from abalone viscera (AV). Trypsin-hydrolysate of AV (TAV) was purified into three fractions using a Sephadex G-10 column. Nine bioactive peptides (VAR, NYER, LGPY, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, LDW, and NLGEW) derived from TAV-F2 were sequenced. LGPY, VTPGLQY, LGEW, LDW, and NLGEW exhibited antioxidant properties, with IC50 values of 0.213, 0.297, 0.289, 0.363, and 0.303 mg/mL, respectively. In vitro analysis determined that the peptides VAR, NYER, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, and NLGEW inhibited ACE, with IC50 values of 0.104, 0.107, 0.023, 0.023, 0.165, 0.004, and 0.146 mg/mL, respectively. The binding interactions of ACE-bioactive peptide complexes were investigated using docking analysis with the ZDCOK server. VTPGLQT interacted with HIS513 and TYR523, and QLQFPVGR interacted with HIS353, ALA354, GLU384, HIS513, and TYR523, contributing to the inhibition of ACE activity. They also interacted with amino acids that contribute to stability by binding to zinc ions. QFPVGR may form complexes with ACE surface sites, suggesting indirect inhibition. These results indicate that AV is a potential source of bioactive peptides with dual antioxidant and anti-hypertensive dual effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信