{"title":"用液化二甲醚直接提取湿微藻杜纳藻中的脂质、β-胡萝卜素和多酚类化合物","authors":"Hideki Kanda, Kaito Kusumi, Li Zhu, Tao Wang","doi":"10.3390/md22100438","DOIUrl":null,"url":null,"abstract":"<p><p>Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet <i>Dunaliella salina</i> using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform-methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform-methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform-methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform-methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform-methanol. Na<sup>+</sup> and Mg<sup>2+</sup> in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform-methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga <i>Dunaliella salina</i> by Liquefied Dimethyl Ether.\",\"authors\":\"Hideki Kanda, Kaito Kusumi, Li Zhu, Tao Wang\",\"doi\":\"10.3390/md22100438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet <i>Dunaliella salina</i> using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform-methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform-methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform-methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform-methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform-methanol. Na<sup>+</sup> and Mg<sup>2+</sup> in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform-methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md22100438\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100438","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga Dunaliella salina by Liquefied Dimethyl Ether.
Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet Dunaliella salina using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform-methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform-methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform-methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform-methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform-methanol. Na+ and Mg2+ in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform-methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.