H-Si(111)表面 Ag20 等离子衰减产生的热载流子转移:万尼尔规中的实时 TDDFT 模拟。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
John L Bost, Christopher Shepard, Yosuke Kanai
{"title":"H-Si(111)表面 Ag20 等离子衰减产生的热载流子转移:万尼尔规中的实时 TDDFT 模拟。","authors":"John L Bost, Christopher Shepard, Yosuke Kanai","doi":"10.1088/1361-648X/ad8b8e","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag<sub>20</sub>nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag<sub>20</sub>nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot carrier transfer from plasmon decay in Ag<sub>20</sub>at H-Si(111) surface: real-time TDDFT simulation in Wannier gauge.\",\"authors\":\"John L Bost, Christopher Shepard, Yosuke Kanai\",\"doi\":\"10.1088/1361-648X/ad8b8e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag<sub>20</sub>nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag<sub>20</sub>nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad8b8e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8b8e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

等离子衰减被认为在诱导等离子纳米粒子与半导体表面之间界面的热载流子转移方面发挥着至关重要的作用。在这项工作中,我们在万尼尔量规下采用实时时变密度泛函理论(RT-TDDFT)模拟,从量子力学角度深入研究了半导体表面 Ag20 纳米粒子中等离子体衰减的非线性动力学。第一原理模拟结果表明,当 Ag20 纳米粒子吸附在氢端 Si(111) 表面时,等离子衰减的速度要快两倍以上,发生在等离子激发后的 100 飞秒内。在质子衰减过程中,可以观察到热载流子在界面上的转移,近 30% 的空穴在半导体表面价带深处产生。在 RT-TDDFT 模拟中使用万尼尔量规特别便于从量子力学角度深入了解复杂异质系统中的非平衡电子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot carrier transfer from plasmon decay in Ag20at H-Si(111) surface: real-time TDDFT simulation in Wannier gauge.

Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag20nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag20nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信