Kutsev Bengisu Ozyoruk, Stephanie A Harmon, Nathan S Lay, Enis C Yilmaz, Ulas Bagci, Deborah E Citrin, Bradford J Wood, Peter A Pinto, Peter L Choyke, Baris Turkbey
{"title":"AI-ADC:基于通道和空间注意力的对比学习,从 T2W MRI 生成 ADC 地图,用于前列腺癌检测。","authors":"Kutsev Bengisu Ozyoruk, Stephanie A Harmon, Nathan S Lay, Enis C Yilmaz, Ulas Bagci, Deborah E Citrin, Bradford J Wood, Peter A Pinto, Peter L Choyke, Baris Turkbey","doi":"10.3390/jpm14101047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI).</p><p><strong>Methods: </strong>By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities. We trained our model on a comprehensive dataset of unpaired T2-weighted images and ADC maps from 506 patients. In evaluating our model, named AI-ADC, we compared it against three state-of-the-art methods: CycleGAN, CUT, and StyTr2.</p><p><strong>Results: </strong>Our model demonstrated a higher mean Structural Similarity Index (SSIM) of 0.863 on a test dataset of 3240 2D MRI slices from 195 patients, compared to values of 0.855, 0.797, and 0.824 for CycleGAN, CUT, and StyTr2, respectively. Similarly, our model achieved a significantly lower Fréchet Inception Distance (FID) value of 31.992, compared to values of 43.458, 179.983, and 58.784 for the other three models, indicating its superior performance in generating ADC maps. Furthermore, we evaluated our model on 147 patients from the publicly available ProstateX dataset, where it demonstrated a higher SSIM of 0.647 and a lower FID of 113.876 compared to the other three models.</p><p><strong>Conclusions: </strong>These results highlight the efficacy of our proposed model in generating ADC maps from T2W MRI, showcasing its potential for enhancing clinical diagnostics and radiological workflows.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"14 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508265/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-ADC: Channel and Spatial Attention-Based Contrastive Learning to Generate ADC Maps from T2W MRI for Prostate Cancer Detection.\",\"authors\":\"Kutsev Bengisu Ozyoruk, Stephanie A Harmon, Nathan S Lay, Enis C Yilmaz, Ulas Bagci, Deborah E Citrin, Bradford J Wood, Peter A Pinto, Peter L Choyke, Baris Turkbey\",\"doi\":\"10.3390/jpm14101047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI).</p><p><strong>Methods: </strong>By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities. We trained our model on a comprehensive dataset of unpaired T2-weighted images and ADC maps from 506 patients. In evaluating our model, named AI-ADC, we compared it against three state-of-the-art methods: CycleGAN, CUT, and StyTr2.</p><p><strong>Results: </strong>Our model demonstrated a higher mean Structural Similarity Index (SSIM) of 0.863 on a test dataset of 3240 2D MRI slices from 195 patients, compared to values of 0.855, 0.797, and 0.824 for CycleGAN, CUT, and StyTr2, respectively. Similarly, our model achieved a significantly lower Fréchet Inception Distance (FID) value of 31.992, compared to values of 43.458, 179.983, and 58.784 for the other three models, indicating its superior performance in generating ADC maps. Furthermore, we evaluated our model on 147 patients from the publicly available ProstateX dataset, where it demonstrated a higher SSIM of 0.647 and a lower FID of 113.876 compared to the other three models.</p><p><strong>Conclusions: </strong>These results highlight the efficacy of our proposed model in generating ADC maps from T2W MRI, showcasing its potential for enhancing clinical diagnostics and radiological workflows.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm14101047\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14101047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
AI-ADC: Channel and Spatial Attention-Based Contrastive Learning to Generate ADC Maps from T2W MRI for Prostate Cancer Detection.
Background/objectives: Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI).
Methods: By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities. We trained our model on a comprehensive dataset of unpaired T2-weighted images and ADC maps from 506 patients. In evaluating our model, named AI-ADC, we compared it against three state-of-the-art methods: CycleGAN, CUT, and StyTr2.
Results: Our model demonstrated a higher mean Structural Similarity Index (SSIM) of 0.863 on a test dataset of 3240 2D MRI slices from 195 patients, compared to values of 0.855, 0.797, and 0.824 for CycleGAN, CUT, and StyTr2, respectively. Similarly, our model achieved a significantly lower Fréchet Inception Distance (FID) value of 31.992, compared to values of 43.458, 179.983, and 58.784 for the other three models, indicating its superior performance in generating ADC maps. Furthermore, we evaluated our model on 147 patients from the publicly available ProstateX dataset, where it demonstrated a higher SSIM of 0.647 and a lower FID of 113.876 compared to the other three models.
Conclusions: These results highlight the efficacy of our proposed model in generating ADC maps from T2W MRI, showcasing its potential for enhancing clinical diagnostics and radiological workflows.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.