多平面截骨术中的电磁骨段追踪:锯骨研究

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze
{"title":"多平面截骨术中的电磁骨段追踪:锯骨研究","authors":"Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze","doi":"10.1002/jor.26000","DOIUrl":null,"url":null,"abstract":"<p><p>Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic bone segment tracking in multiplanar osteotomies: A saw bone study.\",\"authors\":\"Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze\",\"doi\":\"10.1002/jor.26000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.26000\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助矫形手术用于提高精确度。电磁追踪已被证明可提高单平面脱位截骨手术的精确度。然而,在多平面截骨手术中使用电磁追踪技术的研究还很缺乏。为此,我们在标准锯骨上进行了 60 例复杂(脱位和伸展)截骨术。矫正量在手术前进行了随机规划。其中 30 块骨头的矫正量是在术中通过传统的测角法确定的,而另外 30 块骨头的矫正量则是通过电磁追踪法确定的。所有骨骼在手术前后都进行了 CT 扫描,并确定了矫正量,以比较两种技术的精确度。电磁追踪法的精确度为:内收 2.25° ± 1.77°,外展 1.38° ± 1.29°,而传统方法的精确度明显较低。转角计测量偏差与脱位和伸展测量的绝对角度变化之间存在明显关系,偏差越大,角度变化越大。而电磁跟踪法仅在脱位测量中观察到这种相关性。与传统的测角法相比,电磁追踪是一种控制复杂、多平面矫正截骨的精确方法,具有更高的精确度。还需要进一步研究其体内精确度以及对临床结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic bone segment tracking in multiplanar osteotomies: A saw bone study.

Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信