Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze
{"title":"多平面截骨术中的电磁骨段追踪:锯骨研究","authors":"Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze","doi":"10.1002/jor.26000","DOIUrl":null,"url":null,"abstract":"<p><p>Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic bone segment tracking in multiplanar osteotomies: A saw bone study.\",\"authors\":\"Andreas Geisbüsch, Carina Gramer, Thomas Dreher, Niclas Hagen, Sébastien Hagmann, Tobias Renkawitz, Marco Götze\",\"doi\":\"10.1002/jor.26000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.26000\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Electromagnetic bone segment tracking in multiplanar osteotomies: A saw bone study.
Computer assisted orthopedic surgery is used to improve precision. Electro-magnetic tracking has been shown to improve precision in mono-planar derotational osteotomies. However, studies are lacking to investigate its use in multiplanar osteotomies. For this purpose, 60 complex (derotation and extension) osteotomies were performed in standardized sawbones. Correction amount was randomly planned before the procedures. In 30 bones, the amount of correction was determined intraoperatively using conventional goniometric measurement while in the other 30 bones electro-magnetic tracking was used to guide the amount of correction. CT-scans were done before and after the procedures in all bones and the amount of correction was determined to compare the precision of the two techniques. Electromagnetic tracking resulted in a precision of 2.25° ± 1.77° for derotation and 1.38° ± 1.29° for extension, while precision for the conventional method was significantly lower. There was a significant relationship between goniometer measurement deviation and the absolute angle change for derotation and extension measurements with larger deviations for greater angle changes. For the electro-magnetic tracking, this correlation was observed only for derotation measurement. Electro-magnetic tracking represents an accurate method to control complex, multiplanar corrective osteotomies with superior precision in comparison to conventional goniometric measurement. Further research is needed to investigate the in-vivo accuracy and the effects on clinical outcome.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.