{"title":"瑞典室内游泳池空气中的三氯胺。","authors":"Sandra Johannesson, Kåre Eriksson, Gunilla Wastensson, Jessica Westerlund, Pål Graff","doi":"10.1080/15459624.2024.2400231","DOIUrl":null,"url":null,"abstract":"<p><p>Trichloramine is a disinfection by-product in chlorinated swimming pools. It can evaporate into the air and irritate eyes and airways among swimmers and pool workers. This study aimed to evaluate airborne concentrations of trichloramine in different types of indoor swimming pools. Altogether, 72 swimming pools across Sweden were included; 36 exercise pools, 16 instruction pools, seven adventure pools, and 13 rehabilitation pools. In total, 167 sampling sessions were performed with the majority (<i>N</i> = 91) conducted in public exercise pools. Repeated sampling sessions on different days were performed within all pool categories. Airborne trichloramine was measured stationary by the poolside using active sampling on quartz filters. In total, 434 air samples were collected. The geometric mean (GM) concentration of trichloramine for the exercise pools was 0.12 mg/m<sup>3</sup> (range GM<sub>pool</sub>: 0.02-0.29 mg/m<sup>3</sup>) and for about 30% the GM<sub>pool</sub> exceeded the Swedish public health guideline value (0.2 mg/m<sup>3</sup>). The geometric mean for instruction pools was 0.18 mg/m<sup>3</sup> and for adventure pools 0.20 mg/m<sup>3</sup>. Trichloramine concentrations were statistically significantly lower in rehabilitation pools (GM: 0.03 mg/m<sup>3</sup>) compared with the other pool categories. A statistically significant effect of time of the day for sampling was found for the exercise and instruction pools, with higher trichloramine levels during evenings compared with mornings and afternoons. For the rehabilitation pools, trichloramine was significantly higher during the cold season compared with the warm season. Variability in trichloramine concentrations was attributed to between-pool as well as within-pool variances. The within-pool variability encourages a repeated sampling strategy to capture the variation between different days. These findings have implications for exposure assessment in epidemiological studies as well as for indoor air quality monitoring. Trichloramine can cause acute irritative effects at elevated levels, and since trichloramine concentrations may differ depending on the time of the day it is recommended that full-day stationary measurements are supplemented with short-term samplings to capture these variations.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"805-816"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airborne trichloramine in indoor swimming pools in Sweden.\",\"authors\":\"Sandra Johannesson, Kåre Eriksson, Gunilla Wastensson, Jessica Westerlund, Pål Graff\",\"doi\":\"10.1080/15459624.2024.2400231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trichloramine is a disinfection by-product in chlorinated swimming pools. It can evaporate into the air and irritate eyes and airways among swimmers and pool workers. This study aimed to evaluate airborne concentrations of trichloramine in different types of indoor swimming pools. Altogether, 72 swimming pools across Sweden were included; 36 exercise pools, 16 instruction pools, seven adventure pools, and 13 rehabilitation pools. In total, 167 sampling sessions were performed with the majority (<i>N</i> = 91) conducted in public exercise pools. Repeated sampling sessions on different days were performed within all pool categories. Airborne trichloramine was measured stationary by the poolside using active sampling on quartz filters. In total, 434 air samples were collected. The geometric mean (GM) concentration of trichloramine for the exercise pools was 0.12 mg/m<sup>3</sup> (range GM<sub>pool</sub>: 0.02-0.29 mg/m<sup>3</sup>) and for about 30% the GM<sub>pool</sub> exceeded the Swedish public health guideline value (0.2 mg/m<sup>3</sup>). The geometric mean for instruction pools was 0.18 mg/m<sup>3</sup> and for adventure pools 0.20 mg/m<sup>3</sup>. Trichloramine concentrations were statistically significantly lower in rehabilitation pools (GM: 0.03 mg/m<sup>3</sup>) compared with the other pool categories. A statistically significant effect of time of the day for sampling was found for the exercise and instruction pools, with higher trichloramine levels during evenings compared with mornings and afternoons. For the rehabilitation pools, trichloramine was significantly higher during the cold season compared with the warm season. Variability in trichloramine concentrations was attributed to between-pool as well as within-pool variances. The within-pool variability encourages a repeated sampling strategy to capture the variation between different days. These findings have implications for exposure assessment in epidemiological studies as well as for indoor air quality monitoring. Trichloramine can cause acute irritative effects at elevated levels, and since trichloramine concentrations may differ depending on the time of the day it is recommended that full-day stationary measurements are supplemented with short-term samplings to capture these variations.</p>\",\"PeriodicalId\":16599,\"journal\":{\"name\":\"Journal of Occupational and Environmental Hygiene\",\"volume\":\" \",\"pages\":\"805-816\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Occupational and Environmental Hygiene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15459624.2024.2400231\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2400231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Airborne trichloramine in indoor swimming pools in Sweden.
Trichloramine is a disinfection by-product in chlorinated swimming pools. It can evaporate into the air and irritate eyes and airways among swimmers and pool workers. This study aimed to evaluate airborne concentrations of trichloramine in different types of indoor swimming pools. Altogether, 72 swimming pools across Sweden were included; 36 exercise pools, 16 instruction pools, seven adventure pools, and 13 rehabilitation pools. In total, 167 sampling sessions were performed with the majority (N = 91) conducted in public exercise pools. Repeated sampling sessions on different days were performed within all pool categories. Airborne trichloramine was measured stationary by the poolside using active sampling on quartz filters. In total, 434 air samples were collected. The geometric mean (GM) concentration of trichloramine for the exercise pools was 0.12 mg/m3 (range GMpool: 0.02-0.29 mg/m3) and for about 30% the GMpool exceeded the Swedish public health guideline value (0.2 mg/m3). The geometric mean for instruction pools was 0.18 mg/m3 and for adventure pools 0.20 mg/m3. Trichloramine concentrations were statistically significantly lower in rehabilitation pools (GM: 0.03 mg/m3) compared with the other pool categories. A statistically significant effect of time of the day for sampling was found for the exercise and instruction pools, with higher trichloramine levels during evenings compared with mornings and afternoons. For the rehabilitation pools, trichloramine was significantly higher during the cold season compared with the warm season. Variability in trichloramine concentrations was attributed to between-pool as well as within-pool variances. The within-pool variability encourages a repeated sampling strategy to capture the variation between different days. These findings have implications for exposure assessment in epidemiological studies as well as for indoor air quality monitoring. Trichloramine can cause acute irritative effects at elevated levels, and since trichloramine concentrations may differ depending on the time of the day it is recommended that full-day stationary measurements are supplemented with short-term samplings to capture these variations.
期刊介绍:
The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality.
The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.