Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón
{"title":"聚(ε-己内酯)微球对一种简单香豆素的群体药代动力学/药效学模型的影响","authors":"Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón","doi":"10.1080/02652048.2024.2418606","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin.\",\"authors\":\"Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón\",\"doi\":\"10.1080/02652048.2024.2418606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2024.2418606\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2418606","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin.
This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.