以有机脑切片为模型研究高致病性尼帕病毒和埃博拉病毒的神经侵袭性。

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Michelle Gellhorn Serra, Lars Meier, Lucie Sauerhering, Jochen Wilhelm, Alexandra Kupke
{"title":"以有机脑切片为模型研究高致病性尼帕病毒和埃博拉病毒的神经侵袭性。","authors":"Michelle Gellhorn Serra, Lars Meier, Lucie Sauerhering, Jochen Wilhelm, Alexandra Kupke","doi":"10.1099/jgv.0.002038","DOIUrl":null,"url":null,"abstract":"<p><p>Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR<sup>-/-</sup>) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organotypic brain slices as a model to study the neurotropism of the highly pathogenic Nipah and Ebola viruses.\",\"authors\":\"Michelle Gellhorn Serra, Lars Meier, Lucie Sauerhering, Jochen Wilhelm, Alexandra Kupke\",\"doi\":\"10.1099/jgv.0.002038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR<sup>-/-</sup>) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.002038\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尼帕病毒(NiV)和埃博拉病毒(EBOV)是高致病性人畜共患病毒,病死率高达90%。虽然已知大脑是尼帕病毒感染的靶器官,但埃博拉病毒感染患者的中枢神经系统受累只是在2013-2016年西非疫情之后才变得更加明显。为了更深入地了解NiV和EBOV在靶细胞、受影响脑区和局部炎症反应方面的神经侵袭性,我们建立并感染了小鼠器官型脑切片(BS)。NiV和EBO病毒都能感染成年Wt小鼠和缺乏I型IFNs受体(IFNAR-/-)的小鼠的BS,并以各种细胞类型为靶细胞。观察到 NiV 在这两种小鼠品系的 BS 中复制,但未检测到传染性颗粒的释放。相比之下,EBOV的复制在两种BS模型中都受到了限制。在两种病毒感染的模型中都观察到了几种促炎细胞因子和趋化因子的释放,包括 eotaxin、IFN-γ、IL-1α、IL-9、IL-17a 和角质细胞衍生趋化因子 (KC),这表明炎症反应在 NiV 或 EBOV 诱导的神经病理学中的潜在作用。值得注意的是,脉络丛被确定为 EBOV 和 NiV 感染的高度易感目标,这表明血液-脑脊液屏障可能是这些病毒的潜在进入点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organotypic brain slices as a model to study the neurotropism of the highly pathogenic Nipah and Ebola viruses.

Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR-/-) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信