{"title":"未折叠蛋白反应途径中的黄曲霉 hacA 基因是宿主诱导基因沉默的候选靶标","authors":"Perng-Kuang Chang","doi":"10.3390/jof10100719","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal HacA/Hac1 transcription factors play a crucial role in regulating the unfolded protein response (UPR). The UPR helps cells to maintain endoplasmic reticulum (ER) protein homeostasis, which is critical for growth, development, and virulence. The <i>Aspergillus flavus hacA</i> gene encodes a domain rich in basic and acidic amino acids (Bsc) and a basic leucine zipper (bZip) domain, and features a non-conventional intron (Nt20). In this study, CRISPR/Cas9 was utilized to dissect the Bsc-coding, bZip-coding, and Nt20 sequences to elucidate the relationship between genotype and phenotype. In the Bsc and bZip experimental sets, all observed mutations in both coding sequences were in frame, suggesting that out-of-frame mutations are lethal. The survival rate of transformants in the Nt20 experiment set was low, at approximately 7%. Mutations in the intron primarily consisted of out-of-frame insertions and deletions. In addition to the wild-type-like conidial morphology, the mutants exhibited varied colony morphologies, including sclerotial, mixed (conidial and sclerotial), and mycelial morphologies. An ER stress test using dithiothreitol revealed that the sclerotial and mycelial mutants were much more sensitive than the conidial mutants. Additionally, the mycelial mutants were unable to produce aflatoxin but still produced aspergillic acid and kojic acid. RNAi experiments targeting the region encompassing Bsc and bZip indicated that transformant survival rates generally decreased, with a small number of transformants displaying phenotypic changes. Defects in the <i>hacA</i> gene at the DNA and transcript levels affected the survival, growth, and development of <i>A. flavus</i>. Thus, this gene may serve as a promising target for future host-induced gene-silencing strategies aimed at controlling infection and reducing aflatoxin contamination in crops.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"10 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508391/pdf/","citationCount":"0","resultStr":"{\"title\":\"The <i>Aspergillus flavus hacA</i> Gene in the Unfolded Protein Response Pathway Is a Candidate Target for Host-Induced Gene Silencing.\",\"authors\":\"Perng-Kuang Chang\",\"doi\":\"10.3390/jof10100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal HacA/Hac1 transcription factors play a crucial role in regulating the unfolded protein response (UPR). The UPR helps cells to maintain endoplasmic reticulum (ER) protein homeostasis, which is critical for growth, development, and virulence. The <i>Aspergillus flavus hacA</i> gene encodes a domain rich in basic and acidic amino acids (Bsc) and a basic leucine zipper (bZip) domain, and features a non-conventional intron (Nt20). In this study, CRISPR/Cas9 was utilized to dissect the Bsc-coding, bZip-coding, and Nt20 sequences to elucidate the relationship between genotype and phenotype. In the Bsc and bZip experimental sets, all observed mutations in both coding sequences were in frame, suggesting that out-of-frame mutations are lethal. The survival rate of transformants in the Nt20 experiment set was low, at approximately 7%. Mutations in the intron primarily consisted of out-of-frame insertions and deletions. In addition to the wild-type-like conidial morphology, the mutants exhibited varied colony morphologies, including sclerotial, mixed (conidial and sclerotial), and mycelial morphologies. An ER stress test using dithiothreitol revealed that the sclerotial and mycelial mutants were much more sensitive than the conidial mutants. Additionally, the mycelial mutants were unable to produce aflatoxin but still produced aspergillic acid and kojic acid. RNAi experiments targeting the region encompassing Bsc and bZip indicated that transformant survival rates generally decreased, with a small number of transformants displaying phenotypic changes. Defects in the <i>hacA</i> gene at the DNA and transcript levels affected the survival, growth, and development of <i>A. flavus</i>. Thus, this gene may serve as a promising target for future host-induced gene-silencing strategies aimed at controlling infection and reducing aflatoxin contamination in crops.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof10100719\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10100719","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Aspergillus flavus hacA Gene in the Unfolded Protein Response Pathway Is a Candidate Target for Host-Induced Gene Silencing.
Fungal HacA/Hac1 transcription factors play a crucial role in regulating the unfolded protein response (UPR). The UPR helps cells to maintain endoplasmic reticulum (ER) protein homeostasis, which is critical for growth, development, and virulence. The Aspergillus flavus hacA gene encodes a domain rich in basic and acidic amino acids (Bsc) and a basic leucine zipper (bZip) domain, and features a non-conventional intron (Nt20). In this study, CRISPR/Cas9 was utilized to dissect the Bsc-coding, bZip-coding, and Nt20 sequences to elucidate the relationship between genotype and phenotype. In the Bsc and bZip experimental sets, all observed mutations in both coding sequences were in frame, suggesting that out-of-frame mutations are lethal. The survival rate of transformants in the Nt20 experiment set was low, at approximately 7%. Mutations in the intron primarily consisted of out-of-frame insertions and deletions. In addition to the wild-type-like conidial morphology, the mutants exhibited varied colony morphologies, including sclerotial, mixed (conidial and sclerotial), and mycelial morphologies. An ER stress test using dithiothreitol revealed that the sclerotial and mycelial mutants were much more sensitive than the conidial mutants. Additionally, the mycelial mutants were unable to produce aflatoxin but still produced aspergillic acid and kojic acid. RNAi experiments targeting the region encompassing Bsc and bZip indicated that transformant survival rates generally decreased, with a small number of transformants displaying phenotypic changes. Defects in the hacA gene at the DNA and transcript levels affected the survival, growth, and development of A. flavus. Thus, this gene may serve as a promising target for future host-induced gene-silencing strategies aimed at controlling infection and reducing aflatoxin contamination in crops.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.