利用合成的聚丙烯酸-聚丙烯酰胺-GQD 水凝胶纳米复合材料作为高稳定性荧光探针灵敏、选择性地测定联苯胺。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Azra Akbari, Morteza Bahram, Reza Dadashi, Sedigheh Ehsanimehr
{"title":"利用合成的聚丙烯酸-聚丙烯酰胺-GQD 水凝胶纳米复合材料作为高稳定性荧光探针灵敏、选择性地测定联苯胺。","authors":"Azra Akbari, Morteza Bahram, Reza Dadashi, Sedigheh Ehsanimehr","doi":"10.1007/s10895-024-03996-z","DOIUrl":null,"url":null,"abstract":"<p><p>Benzidine is known as a toxic and highly carcinogenic substance, so its determination is an essential issue. Until now, no effective and stable fluorescent probe based on hydrogel nanocomposite has been reported for the determination of this substance. In this work, for the first time, the synthesis and use of tragacanth-poly (acrylic acid-co-acrylamide-GQD) hydrogel nanocomposite (H-GQD) as a novel, high-stable, and selective fluorescence hydrogel nanocomposite for the identification of benzidine is reported. To achieve the maximum responsiveness of this hydrogel nanocomposite to determine benzidine, various parameters such as pH, ionic strength, hydrogel nanocomposite concentration, sensitivity, and selectivity were investigated. The results of the investigations showed that the synthesized H-GQD has excellent stability, selectivity, and linearity range of 0.3 - 12 ppm with a limit of detection of 0.098 ppm. The results of the investigation of real water samples showed that the H-GQD has excellent recovery in the range of 93.3 - 106.6%. Finally, we believe that this H-GQD as a new and highly stable fluorescent probe can be a starting point for its application in various fields and industries to identify benzidine in water samples.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive and Selective Determination of Benzidine by Synthesized tragacanth-poly (Acrylic acid-co-acrylamide-GQD) Hydrogel Nanocomposite as a Highly Stable Fluorescent Probe.\",\"authors\":\"Azra Akbari, Morteza Bahram, Reza Dadashi, Sedigheh Ehsanimehr\",\"doi\":\"10.1007/s10895-024-03996-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Benzidine is known as a toxic and highly carcinogenic substance, so its determination is an essential issue. Until now, no effective and stable fluorescent probe based on hydrogel nanocomposite has been reported for the determination of this substance. In this work, for the first time, the synthesis and use of tragacanth-poly (acrylic acid-co-acrylamide-GQD) hydrogel nanocomposite (H-GQD) as a novel, high-stable, and selective fluorescence hydrogel nanocomposite for the identification of benzidine is reported. To achieve the maximum responsiveness of this hydrogel nanocomposite to determine benzidine, various parameters such as pH, ionic strength, hydrogel nanocomposite concentration, sensitivity, and selectivity were investigated. The results of the investigations showed that the synthesized H-GQD has excellent stability, selectivity, and linearity range of 0.3 - 12 ppm with a limit of detection of 0.098 ppm. The results of the investigation of real water samples showed that the H-GQD has excellent recovery in the range of 93.3 - 106.6%. Finally, we believe that this H-GQD as a new and highly stable fluorescent probe can be a starting point for its application in various fields and industries to identify benzidine in water samples.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03996-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03996-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

联苯胺是一种有毒的高致癌物质,因此对其进行测定是一个至关重要的问题。迄今为止,还没有基于水凝胶纳米复合材料的有效而稳定的荧光探针用于该物质的检测。本研究首次报道了一种新型、高稳定性和选择性荧光水凝胶纳米复合材料--聚(丙烯酸-丙烯酰胺-GQD)水凝胶纳米复合材料(H-GQD)的合成和使用,用于联苯胺的鉴定。为了最大限度地提高该纳米水凝胶对联苯胺的检测灵敏度,研究了 pH 值、离子强度、纳米水凝胶浓度、灵敏度和选择性等各种参数。研究结果表明,合成的 H-GQD 具有良好的稳定性和选择性,线性范围为 0.3 - 12 ppm,检出限为 0.098 ppm。对真实水样的调查结果表明,H-GQD 的回收率在 93.3 - 106.6% 之间,具有极佳的回收率。最后,我们相信,这种 H-GQD 作为一种新型的高稳定性荧光探针,可以作为一个起点,将其应用于各个领域和行业,以鉴定水样中的联苯胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitive and Selective Determination of Benzidine by Synthesized tragacanth-poly (Acrylic acid-co-acrylamide-GQD) Hydrogel Nanocomposite as a Highly Stable Fluorescent Probe.

Benzidine is known as a toxic and highly carcinogenic substance, so its determination is an essential issue. Until now, no effective and stable fluorescent probe based on hydrogel nanocomposite has been reported for the determination of this substance. In this work, for the first time, the synthesis and use of tragacanth-poly (acrylic acid-co-acrylamide-GQD) hydrogel nanocomposite (H-GQD) as a novel, high-stable, and selective fluorescence hydrogel nanocomposite for the identification of benzidine is reported. To achieve the maximum responsiveness of this hydrogel nanocomposite to determine benzidine, various parameters such as pH, ionic strength, hydrogel nanocomposite concentration, sensitivity, and selectivity were investigated. The results of the investigations showed that the synthesized H-GQD has excellent stability, selectivity, and linearity range of 0.3 - 12 ppm with a limit of detection of 0.098 ppm. The results of the investigation of real water samples showed that the H-GQD has excellent recovery in the range of 93.3 - 106.6%. Finally, we believe that this H-GQD as a new and highly stable fluorescent probe can be a starting point for its application in various fields and industries to identify benzidine in water samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信