Minsu Park, Minhee Hwang, Ji Won Lee, Kun-Il Kim, Chulkyun Ahn, Young Ju Suh, Yeon Joo Jeong
{"title":"基于深度学习的对比度增强算法在减少碘负荷的低剂量计算机断层扫描肺血管造影中的应用","authors":"Minsu Park, Minhee Hwang, Ji Won Lee, Kun-Il Kim, Chulkyun Ahn, Young Ju Suh, Yeon Joo Jeong","doi":"10.1097/RCT.0000000000001665","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load.</p><p><strong>Methods: </strong>This study included 179 patients who underwent low-dose computed tomography pulmonary angiography with a reduced iodine load using 64 mL of a 1:1 mixture of contrast medium from January 1 to June 30, 2023. For single-energy computed tomography, the noise index was set at 15.4 to maintain a CTDIvol of <2 mGy at 80 kVp, and for dual-energy computed tomography, fast kV-switching between 80 and 140 kVp was employed with a fixed tube current of 145 mA. Images were reconstructed by 50% adaptive statistical iterative reconstruction (AR50) and a commercially available deep learning image reconstruction (TrueFidelity) package at a high strength level (TFH). In addition, AR50 images were further processed using a deep learning-based contrast-boosting algorithm (AR50-CB). Quantitative and qualitative image qualities and numbers of involved vessels with thrombus at each pulmonary artery level were compared in the 3 image types using the Friedman test and Wilcoxon signed rank test.</p><p><strong>Results: </strong>Five hundred thirty-seven reconstructed image datasets of 179 patients were analyzed. Quantitative image analysis showed AR50-CB (30.8 ± 10.0 and 28.1 ± 9.6, respectively) had significantly higher signal-to-noise ratio and contrast-to-noise ratio values than AR50 (20.2 ± 6.2 and 17.8 ± 6.2, respectively) (P < 0.001) or TFH (28.3 ± 8.3 and 24.9 ± 8.1, respectively) (P < 0.001). Qualitative image analysis showed that contrast enhancement and noise scores of AR50-CB were significantly greater than those of AR50 (P < 0.001) and that AR50-CB enhancement scores were significantly higher than TFH enhancement scores (P < 0.001). The number of subsegmental pulmonary arteries affected by thrombus detected was significantly greater for AR50-CB (30 for AR50, 30 for TFH, and 55 for AR50-CB, P < 0.001).</p><p><strong>Conclusions: </strong>The use of a deep learning-based contrast-boosting algorithm improved image quality in terms of signal-to-noise ratio and contrast-to-noise ratio values and the detection of thrombi in subsegmental pulmonary arteries.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load.\",\"authors\":\"Minsu Park, Minhee Hwang, Ji Won Lee, Kun-Il Kim, Chulkyun Ahn, Young Ju Suh, Yeon Joo Jeong\",\"doi\":\"10.1097/RCT.0000000000001665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load.</p><p><strong>Methods: </strong>This study included 179 patients who underwent low-dose computed tomography pulmonary angiography with a reduced iodine load using 64 mL of a 1:1 mixture of contrast medium from January 1 to June 30, 2023. For single-energy computed tomography, the noise index was set at 15.4 to maintain a CTDIvol of <2 mGy at 80 kVp, and for dual-energy computed tomography, fast kV-switching between 80 and 140 kVp was employed with a fixed tube current of 145 mA. Images were reconstructed by 50% adaptive statistical iterative reconstruction (AR50) and a commercially available deep learning image reconstruction (TrueFidelity) package at a high strength level (TFH). In addition, AR50 images were further processed using a deep learning-based contrast-boosting algorithm (AR50-CB). Quantitative and qualitative image qualities and numbers of involved vessels with thrombus at each pulmonary artery level were compared in the 3 image types using the Friedman test and Wilcoxon signed rank test.</p><p><strong>Results: </strong>Five hundred thirty-seven reconstructed image datasets of 179 patients were analyzed. Quantitative image analysis showed AR50-CB (30.8 ± 10.0 and 28.1 ± 9.6, respectively) had significantly higher signal-to-noise ratio and contrast-to-noise ratio values than AR50 (20.2 ± 6.2 and 17.8 ± 6.2, respectively) (P < 0.001) or TFH (28.3 ± 8.3 and 24.9 ± 8.1, respectively) (P < 0.001). Qualitative image analysis showed that contrast enhancement and noise scores of AR50-CB were significantly greater than those of AR50 (P < 0.001) and that AR50-CB enhancement scores were significantly higher than TFH enhancement scores (P < 0.001). The number of subsegmental pulmonary arteries affected by thrombus detected was significantly greater for AR50-CB (30 for AR50, 30 for TFH, and 55 for AR50-CB, P < 0.001).</p><p><strong>Conclusions: </strong>The use of a deep learning-based contrast-boosting algorithm improved image quality in terms of signal-to-noise ratio and contrast-to-noise ratio values and the detection of thrombi in subsegmental pulmonary arteries.</p>\",\"PeriodicalId\":15402,\"journal\":{\"name\":\"Journal of Computer Assisted Tomography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RCT.0000000000001665\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001665","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load.
Objective: The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load.
Methods: This study included 179 patients who underwent low-dose computed tomography pulmonary angiography with a reduced iodine load using 64 mL of a 1:1 mixture of contrast medium from January 1 to June 30, 2023. For single-energy computed tomography, the noise index was set at 15.4 to maintain a CTDIvol of <2 mGy at 80 kVp, and for dual-energy computed tomography, fast kV-switching between 80 and 140 kVp was employed with a fixed tube current of 145 mA. Images were reconstructed by 50% adaptive statistical iterative reconstruction (AR50) and a commercially available deep learning image reconstruction (TrueFidelity) package at a high strength level (TFH). In addition, AR50 images were further processed using a deep learning-based contrast-boosting algorithm (AR50-CB). Quantitative and qualitative image qualities and numbers of involved vessels with thrombus at each pulmonary artery level were compared in the 3 image types using the Friedman test and Wilcoxon signed rank test.
Results: Five hundred thirty-seven reconstructed image datasets of 179 patients were analyzed. Quantitative image analysis showed AR50-CB (30.8 ± 10.0 and 28.1 ± 9.6, respectively) had significantly higher signal-to-noise ratio and contrast-to-noise ratio values than AR50 (20.2 ± 6.2 and 17.8 ± 6.2, respectively) (P < 0.001) or TFH (28.3 ± 8.3 and 24.9 ± 8.1, respectively) (P < 0.001). Qualitative image analysis showed that contrast enhancement and noise scores of AR50-CB were significantly greater than those of AR50 (P < 0.001) and that AR50-CB enhancement scores were significantly higher than TFH enhancement scores (P < 0.001). The number of subsegmental pulmonary arteries affected by thrombus detected was significantly greater for AR50-CB (30 for AR50, 30 for TFH, and 55 for AR50-CB, P < 0.001).
Conclusions: The use of a deep learning-based contrast-boosting algorithm improved image quality in terms of signal-to-noise ratio and contrast-to-noise ratio values and the detection of thrombi in subsegmental pulmonary arteries.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).