{"title":"在没有校准函数的局部混合函数中抑制量规问题:局部混合函数的选择","authors":"Alexei V Arbuznikov, Artur Wodyński, Martin Kaupp","doi":"10.1063/5.0233312","DOIUrl":null,"url":null,"abstract":"<p><p>Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function.\",\"authors\":\"Alexei V Arbuznikov, Artur Wodyński, Martin Kaupp\",\"doi\":\"10.1063/5.0233312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233312\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0233312","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function.
Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.