探索 PPARγ 复发性膀胱癌突变体激活过程的分子途径。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Vinícius M de Oliveira, Caique C Malospirito, Fernando B da Silva, Natália B Videira, Marieli M G Dias, Murilo N Sanches, Vitor B P Leite, Ana Carolina M Figueira
{"title":"探索 PPARγ 复发性膀胱癌突变体激活过程的分子途径。","authors":"Vinícius M de Oliveira, Caique C Malospirito, Fernando B da Silva, Natália B Videira, Marieli M G Dias, Murilo N Sanches, Vitor B P Leite, Ana Carolina M Figueira","doi":"10.1063/5.0232041","DOIUrl":null,"url":null,"abstract":"<p><p>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants.\",\"authors\":\"Vinícius M de Oliveira, Caique C Malospirito, Fernando B da Silva, Natália B Videira, Marieli M G Dias, Murilo N Sanches, Vitor B P Leite, Ana Carolina M Figueira\",\"doi\":\"10.1063/5.0232041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232041\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0232041","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物酶体增殖激活受体γ(PPARγ)在葡萄糖稳态和脂肪生成中的复杂参与已得到公认。然而,它在癌症,尤其是腔膀胱癌中的作用仍存在争议。PPARγ 的过表达和激活与肿瘤发生有关。PPARγ 配体结合域内的特定功能增益突变(M280I、I290M 和 T475M)与膀胱癌和受体激活有关。这些突变引发的潜在分子通路仍不清楚。我们采用了基于双基底结构的模型(db-SBM)来探索 PPARγ 非活性和活性状态之间的构象动力学,并研究了 M280I、I290M 和 T475M 突变的影响。我们的研究结果与现有文献一致,显示 I290M 和 T475M 突变体的配体依赖性转录活性增强。与野生型受体相比,这两种突变体都显示出活性状态的稳定性增强,其中 I290M 突变促进了一种特定的过渡途径,使其成为进一步研究的主要候选对象。静电分析确定 K303 和 E488 残基在 I290M 激活级联中起关键作用。生物物理实验证实,破坏 K303-E488 的相互作用会降低 I290M 突变的热稳定特性。我们的研究展示了结合模拟和化学信息学方法的预测能力,并通过生化实验进行了验证,从而深入了解分子活化机制并确定调节蛋白质的目标残基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants.

The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信