{"title":"isoAsp-Quest:利用数据库搜索进行 isoAsp 识别的工作流程开发。","authors":"Hiroaki Sakaue, Atsushi Kuno","doi":"10.1093/jb/mvae071","DOIUrl":null,"url":null,"abstract":"<p><p>A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the MS-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyze Asp isomers using mass spectrometry. Herein, we present a novel strategy, isoAsp-Quest, which is a database search-oriented isoAsp identification method. isoAsp is specifically converted to 18O-labeled Lα-Asp by the enzymatic reaction of protein L-isoaspartyl-O-methyltransferase (PIMT) in 18O water with a mass shift of 2 Da, which, in principle, enables us to distinguish Asp isomers. However, in practice, a labeled Lα-Asp signal overlaps with that of endogenous Lα-Asp, making detection challenging. Therefore, degradation of the endogenous Lα-Asp peptide by AspN and subsequent removal of AspN were performed prior to the PIMT reaction. This strategy was applied to bovine lens α-crystallin. Consequently, several Asp isomerization sites, consistent with human αA-crystallin, were identified in bovine αA-crystallin, indicating that this strategy is also effective for biological proteins. Therefore, isoAsp-Quest enables the analysis of Lβ-Asp in a straightforward and rapid workflow, which may be useful for the quality control of protein products and biomarker discovery.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"isoAsp-Quest: Workflow development for isoAsp identification using database searches.\",\"authors\":\"Hiroaki Sakaue, Atsushi Kuno\",\"doi\":\"10.1093/jb/mvae071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the MS-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyze Asp isomers using mass spectrometry. Herein, we present a novel strategy, isoAsp-Quest, which is a database search-oriented isoAsp identification method. isoAsp is specifically converted to 18O-labeled Lα-Asp by the enzymatic reaction of protein L-isoaspartyl-O-methyltransferase (PIMT) in 18O water with a mass shift of 2 Da, which, in principle, enables us to distinguish Asp isomers. However, in practice, a labeled Lα-Asp signal overlaps with that of endogenous Lα-Asp, making detection challenging. Therefore, degradation of the endogenous Lα-Asp peptide by AspN and subsequent removal of AspN were performed prior to the PIMT reaction. This strategy was applied to bovine lens α-crystallin. Consequently, several Asp isomerization sites, consistent with human αA-crystallin, were identified in bovine αA-crystallin, indicating that this strategy is also effective for biological proteins. Therefore, isoAsp-Quest enables the analysis of Lβ-Asp in a straightforward and rapid workflow, which may be useful for the quality control of protein products and biomarker discovery.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvae071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
isoAsp-Quest: Workflow development for isoAsp identification using database searches.
A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the MS-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyze Asp isomers using mass spectrometry. Herein, we present a novel strategy, isoAsp-Quest, which is a database search-oriented isoAsp identification method. isoAsp is specifically converted to 18O-labeled Lα-Asp by the enzymatic reaction of protein L-isoaspartyl-O-methyltransferase (PIMT) in 18O water with a mass shift of 2 Da, which, in principle, enables us to distinguish Asp isomers. However, in practice, a labeled Lα-Asp signal overlaps with that of endogenous Lα-Asp, making detection challenging. Therefore, degradation of the endogenous Lα-Asp peptide by AspN and subsequent removal of AspN were performed prior to the PIMT reaction. This strategy was applied to bovine lens α-crystallin. Consequently, several Asp isomerization sites, consistent with human αA-crystallin, were identified in bovine αA-crystallin, indicating that this strategy is also effective for biological proteins. Therefore, isoAsp-Quest enables the analysis of Lβ-Asp in a straightforward and rapid workflow, which may be useful for the quality control of protein products and biomarker discovery.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.