Owen Devine, Huong Pham, Betsy Gunnels, Heather E. Reese, Molly Steele, Alexia Couture, Danielle Iuliano, Darpun Sachdev, Nisha B. Alden, James Meek, Lucy Witt, Patricia A. Ryan, Libby Reeg, Ruth Lynfield, Susan L. Ropp, Grant Barney, Brenda L. Tesini, Eli Shiltz, Melissa Sutton, H. Keipp Talbot, Isabella Reyes, Fiona P. Havers
{"title":"推断哨点监测信息以估算全国 COVID 住院率:贝叶斯建模方法。","authors":"Owen Devine, Huong Pham, Betsy Gunnels, Heather E. Reese, Molly Steele, Alexia Couture, Danielle Iuliano, Darpun Sachdev, Nisha B. Alden, James Meek, Lucy Witt, Patricia A. Ryan, Libby Reeg, Ruth Lynfield, Susan L. Ropp, Grant Barney, Brenda L. Tesini, Eli Shiltz, Melissa Sutton, H. Keipp Talbot, Isabella Reyes, Fiona P. Havers","doi":"10.1111/irv.70026","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was established in March 2020 to monitor trends in hospitalizations associated with SARS-CoV-2 infection. COVID-NET is a geographically diverse population-based surveillance system for laboratory-confirmed COVID-19-associated hospitalizations with a combined catchment area covering approximately 10% of the US population. Data collected in COVID-NET includes monthly counts of hospitalizations for persons with confirmed SARS-CoV-2 infection who reside within the defined catchment area. A Bayesian modeling approach is proposed to estimate US national COVID-associated hospital admission rates based on information reported in the COVID-NET system. A key component of the approach is the ability to estimate uncertainty resulting from extrapolation of hospitalization rates observed within COVID-NET to the US population. In addition, the proposed model enables estimation of other contributors to uncertainty including temporal dependence among reported COVID-NET admission counts, the impact of unmeasured site-specific factors, and the frequency and accuracy of testing for SARS-CoV-2 infection. Based on the proposed model, an estimated 6.3 million (95% uncertainty interval (UI) 5.4–7.3 million) COVID-19-associated hospital admissions occurred in the United States from September 2020 through December 2023. Between April 2020 and December 2023, model-based monthly admission rate estimates ranged from a minimum of 1 per 10,000 population (95% UI 0.7–1.2) in June of 2023 to a highest monthly level of 16 per 10,000 (95% UI 13–19) in January 2022.</p>","PeriodicalId":13544,"journal":{"name":"Influenza and Other Respiratory Viruses","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497105/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extrapolating Sentinel Surveillance Information to Estimate National COVID Hospital Admission Rates: A Bayesian Modeling Approach\",\"authors\":\"Owen Devine, Huong Pham, Betsy Gunnels, Heather E. Reese, Molly Steele, Alexia Couture, Danielle Iuliano, Darpun Sachdev, Nisha B. Alden, James Meek, Lucy Witt, Patricia A. Ryan, Libby Reeg, Ruth Lynfield, Susan L. Ropp, Grant Barney, Brenda L. Tesini, Eli Shiltz, Melissa Sutton, H. Keipp Talbot, Isabella Reyes, Fiona P. Havers\",\"doi\":\"10.1111/irv.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was established in March 2020 to monitor trends in hospitalizations associated with SARS-CoV-2 infection. COVID-NET is a geographically diverse population-based surveillance system for laboratory-confirmed COVID-19-associated hospitalizations with a combined catchment area covering approximately 10% of the US population. Data collected in COVID-NET includes monthly counts of hospitalizations for persons with confirmed SARS-CoV-2 infection who reside within the defined catchment area. A Bayesian modeling approach is proposed to estimate US national COVID-associated hospital admission rates based on information reported in the COVID-NET system. A key component of the approach is the ability to estimate uncertainty resulting from extrapolation of hospitalization rates observed within COVID-NET to the US population. In addition, the proposed model enables estimation of other contributors to uncertainty including temporal dependence among reported COVID-NET admission counts, the impact of unmeasured site-specific factors, and the frequency and accuracy of testing for SARS-CoV-2 infection. Based on the proposed model, an estimated 6.3 million (95% uncertainty interval (UI) 5.4–7.3 million) COVID-19-associated hospital admissions occurred in the United States from September 2020 through December 2023. Between April 2020 and December 2023, model-based monthly admission rate estimates ranged from a minimum of 1 per 10,000 population (95% UI 0.7–1.2) in June of 2023 to a highest monthly level of 16 per 10,000 (95% UI 13–19) in January 2022.</p>\",\"PeriodicalId\":13544,\"journal\":{\"name\":\"Influenza and Other Respiratory Viruses\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497105/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Influenza and Other Respiratory Viruses\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/irv.70026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Influenza and Other Respiratory Viruses","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irv.70026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Extrapolating Sentinel Surveillance Information to Estimate National COVID Hospital Admission Rates: A Bayesian Modeling Approach
The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was established in March 2020 to monitor trends in hospitalizations associated with SARS-CoV-2 infection. COVID-NET is a geographically diverse population-based surveillance system for laboratory-confirmed COVID-19-associated hospitalizations with a combined catchment area covering approximately 10% of the US population. Data collected in COVID-NET includes monthly counts of hospitalizations for persons with confirmed SARS-CoV-2 infection who reside within the defined catchment area. A Bayesian modeling approach is proposed to estimate US national COVID-associated hospital admission rates based on information reported in the COVID-NET system. A key component of the approach is the ability to estimate uncertainty resulting from extrapolation of hospitalization rates observed within COVID-NET to the US population. In addition, the proposed model enables estimation of other contributors to uncertainty including temporal dependence among reported COVID-NET admission counts, the impact of unmeasured site-specific factors, and the frequency and accuracy of testing for SARS-CoV-2 infection. Based on the proposed model, an estimated 6.3 million (95% uncertainty interval (UI) 5.4–7.3 million) COVID-19-associated hospital admissions occurred in the United States from September 2020 through December 2023. Between April 2020 and December 2023, model-based monthly admission rate estimates ranged from a minimum of 1 per 10,000 population (95% UI 0.7–1.2) in June of 2023 to a highest monthly level of 16 per 10,000 (95% UI 13–19) in January 2022.
期刊介绍:
Influenza and Other Respiratory Viruses is the official journal of the International Society of Influenza and Other Respiratory Virus Diseases - an independent scientific professional society - dedicated to promoting the prevention, detection, treatment, and control of influenza and other respiratory virus diseases.
Influenza and Other Respiratory Viruses is an Open Access journal. Copyright on any research article published by Influenza and Other Respiratory Viruses is retained by the author(s). Authors grant Wiley a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.