{"title":"氯丙嗪负载明胶甲基丙烯酰水凝胶的光聚合:表征与抗菌应用。","authors":"Tatiana Tozar, Simona Nistorescu, Gratiela Gradisteanu Pircalabioru, Mihai Boni, Angela Staicu","doi":"10.3390/gels10100632","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the synthesis, characterization, and antimicrobial properties of hydrogels synthesized through the UV-pulsed laser photopolymerization of a polymer-photoinitiator-chlorpromazine mixture. Chlorpromazine was used for its known enhanced antimicrobial properties when exposed to UV laser radiation. The hydrogel was formed from a mixture containing 0.05% Irgacure 2959, 10% gelatin methacryloyl, and various concentrations of chlorpromazine (1, 2, and 4 mg/mL). Laser-induced fluorescence spectroscopy was employed to monitor the photoinduced changes of chlorpromazine and Irgacure 2959 during hydrogel formation, providing insight into the photodegradation dynamics. FTIR spectroscopy confirmed the incorporation of irradiated chlorpromazine within the hydrogel matrix, while the release profiles of chlorpromazine showed sustained release only in hydrogels containing 1 mg/mL of CPZ. The hydrogel showed significant antimicrobial activity against MRSA bacteria when compared to that of penicillin. These findings highlight the potential of CPZ loaded during the photopolymerization process into hydrogels as effective antimicrobial agents with sustained release properties, making them suitable for combating resistant bacterial strains.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications.\",\"authors\":\"Tatiana Tozar, Simona Nistorescu, Gratiela Gradisteanu Pircalabioru, Mihai Boni, Angela Staicu\",\"doi\":\"10.3390/gels10100632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the synthesis, characterization, and antimicrobial properties of hydrogels synthesized through the UV-pulsed laser photopolymerization of a polymer-photoinitiator-chlorpromazine mixture. Chlorpromazine was used for its known enhanced antimicrobial properties when exposed to UV laser radiation. The hydrogel was formed from a mixture containing 0.05% Irgacure 2959, 10% gelatin methacryloyl, and various concentrations of chlorpromazine (1, 2, and 4 mg/mL). Laser-induced fluorescence spectroscopy was employed to monitor the photoinduced changes of chlorpromazine and Irgacure 2959 during hydrogel formation, providing insight into the photodegradation dynamics. FTIR spectroscopy confirmed the incorporation of irradiated chlorpromazine within the hydrogel matrix, while the release profiles of chlorpromazine showed sustained release only in hydrogels containing 1 mg/mL of CPZ. The hydrogel showed significant antimicrobial activity against MRSA bacteria when compared to that of penicillin. These findings highlight the potential of CPZ loaded during the photopolymerization process into hydrogels as effective antimicrobial agents with sustained release properties, making them suitable for combating resistant bacterial strains.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100632\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100632","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Photopolymerization of Chlorpromazine-Loaded Gelatin Methacryloyl Hydrogels: Characterization and Antimicrobial Applications.
This study investigates the synthesis, characterization, and antimicrobial properties of hydrogels synthesized through the UV-pulsed laser photopolymerization of a polymer-photoinitiator-chlorpromazine mixture. Chlorpromazine was used for its known enhanced antimicrobial properties when exposed to UV laser radiation. The hydrogel was formed from a mixture containing 0.05% Irgacure 2959, 10% gelatin methacryloyl, and various concentrations of chlorpromazine (1, 2, and 4 mg/mL). Laser-induced fluorescence spectroscopy was employed to monitor the photoinduced changes of chlorpromazine and Irgacure 2959 during hydrogel formation, providing insight into the photodegradation dynamics. FTIR spectroscopy confirmed the incorporation of irradiated chlorpromazine within the hydrogel matrix, while the release profiles of chlorpromazine showed sustained release only in hydrogels containing 1 mg/mL of CPZ. The hydrogel showed significant antimicrobial activity against MRSA bacteria when compared to that of penicillin. These findings highlight the potential of CPZ loaded during the photopolymerization process into hydrogels as effective antimicrobial agents with sustained release properties, making them suitable for combating resistant bacterial strains.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.