牛奶及其胶凝产品中的乳液结构重塑:综述

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-10-21 DOI:10.3390/gels10100671
Dexing Yao, Le-Chang Sun, Ling-Jing Zhang, Yu-Lei Chen, Song Miao, Ming-Jie Cao, Duanquan Lin
{"title":"牛奶及其胶凝产品中的乳液结构重塑:综述","authors":"Dexing Yao, Le-Chang Sun, Ling-Jing Zhang, Yu-Lei Chen, Song Miao, Ming-Jie Cao, Duanquan Lin","doi":"10.3390/gels10100671","DOIUrl":null,"url":null,"abstract":"<p><p>The fat covered by fat globule membrane is scattered in a water phase rich in lactose and milky protein, forming the original emulsion structure of milk. In order to develop low-fat milk products with good performance or dairy products with nutritional reinforcement, the original emulsion structure of milk can be restructured. According to the type of lipid and emulsion structure in milk, the remolded emulsion structure can be divided into three types: restructured single emulsion structure, mixed emulsion structure, and double emulsion structure. The restructured single emulsion structure refers to the introduction of another kind of lipid to skim milk, and the mixed emulsion structure refers to adding another type of oil or oil-in-water (O/W) emulsion to milk containing certain levels of milk fat, whose final emulsion structure is still O/W emulsion. In contrast, the double emulsion structure of milk is a more complicated structural remodeling method, which is usually performed by introducing W/O emulsion into skim milk (W<sub>2</sub>) to obtain milk containing (water-in-oil-in-water) W<sub>1</sub>/O/W<sub>2</sub> emulsion structure in order to encapsulate more diverse nutrients. Causal statistical analysis was used in this review, based on previous studies on remodeling the emulsion structures in milk and its gelling products. In addition, some common processing technologies (including heat treatment, high-pressure treatment, homogenization, ultrasonic treatment, micro-fluidization, freezing and membrane emulsification) may also have a certain impact on the microstructure and properties of milk and its gelling products with four different emulsion structures. These processing technologies can change the size of the dispersed phase of milk, the composition and structure of the interfacial layer, and the composition and morphology of the aqueous phase substance, so as to regulate the shelf-life, stability, and sensory properties of the final milk products. This research on the restructuring of the emulsion structure of milk is not only a cutting-edge topic in the field of food science, but also a powerful driving force in promoting the transformation and upgrading of the dairy industry to achieve high-quality and multi-functional dairy products, in order to meet the diversified needs of consumers for health and taste.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review.\",\"authors\":\"Dexing Yao, Le-Chang Sun, Ling-Jing Zhang, Yu-Lei Chen, Song Miao, Ming-Jie Cao, Duanquan Lin\",\"doi\":\"10.3390/gels10100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fat covered by fat globule membrane is scattered in a water phase rich in lactose and milky protein, forming the original emulsion structure of milk. In order to develop low-fat milk products with good performance or dairy products with nutritional reinforcement, the original emulsion structure of milk can be restructured. According to the type of lipid and emulsion structure in milk, the remolded emulsion structure can be divided into three types: restructured single emulsion structure, mixed emulsion structure, and double emulsion structure. The restructured single emulsion structure refers to the introduction of another kind of lipid to skim milk, and the mixed emulsion structure refers to adding another type of oil or oil-in-water (O/W) emulsion to milk containing certain levels of milk fat, whose final emulsion structure is still O/W emulsion. In contrast, the double emulsion structure of milk is a more complicated structural remodeling method, which is usually performed by introducing W/O emulsion into skim milk (W<sub>2</sub>) to obtain milk containing (water-in-oil-in-water) W<sub>1</sub>/O/W<sub>2</sub> emulsion structure in order to encapsulate more diverse nutrients. Causal statistical analysis was used in this review, based on previous studies on remodeling the emulsion structures in milk and its gelling products. In addition, some common processing technologies (including heat treatment, high-pressure treatment, homogenization, ultrasonic treatment, micro-fluidization, freezing and membrane emulsification) may also have a certain impact on the microstructure and properties of milk and its gelling products with four different emulsion structures. These processing technologies can change the size of the dispersed phase of milk, the composition and structure of the interfacial layer, and the composition and morphology of the aqueous phase substance, so as to regulate the shelf-life, stability, and sensory properties of the final milk products. This research on the restructuring of the emulsion structure of milk is not only a cutting-edge topic in the field of food science, but also a powerful driving force in promoting the transformation and upgrading of the dairy industry to achieve high-quality and multi-functional dairy products, in order to meet the diversified needs of consumers for health and taste.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100671\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100671","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

脂肪球膜包裹的脂肪分散在富含乳糖和乳蛋白的水相中,形成了牛奶原有的乳液结构。为了开发性能优良的低脂牛奶产品或营养强化的乳制品,可以对牛奶原有的乳液结构进行重组。根据牛奶中脂质和乳液结构的类型,重塑后的乳液结构可分为三种类型:重塑单乳液结构、混合乳液结构和双乳液结构。重组单一乳液结构指的是在脱脂奶中引入另一种脂质,混合乳液结构指的是在含有一定量乳脂的牛奶中加入另一种油或水包油乳液,其最终乳液结构仍为水包油乳液。相比之下,牛奶的双乳液结构是一种更为复杂的结构重塑方法,通常是在脱脂奶(W2)中加入油包水型乳液,从而得到含有(水包油)W1/O/W2 乳液结构的牛奶,以包裹更多样化的营养成分。根据以往对牛奶及其胶凝产品乳液结构重塑的研究,本综述采用了因果统计分析。此外,一些常见的加工技术(包括热处理、高压处理、均质化、超声波处理、微流体化、冷冻和膜乳化)也会对牛奶及其胶凝产品中四种不同乳液结构的微观结构和特性产生一定的影响。这些加工技术可以改变牛奶分散相的大小、界面层的组成和结构、水相物质的组成和形态,从而调节最终牛奶产品的保质期、稳定性和感官特性。牛奶乳液结构重组研究不仅是食品科学领域的前沿课题,也是推动乳制品产业转型升级,实现乳制品高品质、多功能化,以满足消费者对健康和口味多样化需求的强大动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review.

The fat covered by fat globule membrane is scattered in a water phase rich in lactose and milky protein, forming the original emulsion structure of milk. In order to develop low-fat milk products with good performance or dairy products with nutritional reinforcement, the original emulsion structure of milk can be restructured. According to the type of lipid and emulsion structure in milk, the remolded emulsion structure can be divided into three types: restructured single emulsion structure, mixed emulsion structure, and double emulsion structure. The restructured single emulsion structure refers to the introduction of another kind of lipid to skim milk, and the mixed emulsion structure refers to adding another type of oil or oil-in-water (O/W) emulsion to milk containing certain levels of milk fat, whose final emulsion structure is still O/W emulsion. In contrast, the double emulsion structure of milk is a more complicated structural remodeling method, which is usually performed by introducing W/O emulsion into skim milk (W2) to obtain milk containing (water-in-oil-in-water) W1/O/W2 emulsion structure in order to encapsulate more diverse nutrients. Causal statistical analysis was used in this review, based on previous studies on remodeling the emulsion structures in milk and its gelling products. In addition, some common processing technologies (including heat treatment, high-pressure treatment, homogenization, ultrasonic treatment, micro-fluidization, freezing and membrane emulsification) may also have a certain impact on the microstructure and properties of milk and its gelling products with four different emulsion structures. These processing technologies can change the size of the dispersed phase of milk, the composition and structure of the interfacial layer, and the composition and morphology of the aqueous phase substance, so as to regulate the shelf-life, stability, and sensory properties of the final milk products. This research on the restructuring of the emulsion structure of milk is not only a cutting-edge topic in the field of food science, but also a powerful driving force in promoting the transformation and upgrading of the dairy industry to achieve high-quality and multi-functional dairy products, in order to meet the diversified needs of consumers for health and taste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信