Laura Eced-Rodríguez, Michael Beyrer, Dolores Rodrigo, Alejandro Rivas, Consuelo Esteve, Maria Consuelo Pina-Pérez
{"title":"冷等离子体对蜡样芽孢杆菌细胞造成的亚致死损伤:对细胞活力和生物膜形成能力的影响","authors":"Laura Eced-Rodríguez, Michael Beyrer, Dolores Rodrigo, Alejandro Rivas, Consuelo Esteve, Maria Consuelo Pina-Pérez","doi":"10.3390/foods13203251","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Bacillus cereus</i> group represents a serious risk in powdered and amylaceous foodstuffs. Cold plasma (the fourth state of matter) is emerging as an alternative effective nonthermal technology for pasteurizing a wide range of matrices in solid, liquid, and powder form. The present study aims to evaluate the mechanisms involved in <i>Bacillus cereus</i> inactivation via cold plasma, focusing on (i) the technology's ability to generate damage in cells (at the morphological and molecular levels) and (ii) studying the effectiveness of cold plasma in biofilm mitigation through the direct effect and inhibition of the biofilm-forming capacity of sublethally damaged cells post-treatment. Dielectric barrier discharge cold plasma (DBD-CP) technology was used to inactivate <i>B. cereus</i>, <i>B. thuringiensis</i>, and <i>B. mycoides</i> under plasma power settings of 100, 200, and 300 W and treatment times ranging from 1 to 10 min. Inactivation levels were achieved in 2-7 log<sub>10</sub> cycles under the studied conditions. Percentages of sublethally damaged cells were observed in a range of 45-98%, specifically at treatment times below 7 min. The sublethally damaged cells showed poration, erosion, and loss of integrity at the superficial level. At the molecular level, proteins and DNA leakage were also observed for <i>B. cereus</i> but were minimal for <i>B. mycoides</i>. Biofilms formed by <i>B. cereus</i> were progressively disintegrated under the DBD-CP treatment. The greater the CP treatment intensity, the greater the tearing of the bacteria's biofilm network. Additionally, cells sublethally damaged by DBD-CP were evaluated in terms of their biofilm-forming capacity. Significant losses in the damaged cells' biofilm network density and aggregation capacity were observed when <i>B. cereus</i> was recovered after inactivation at 300 W for 7.5 min, compared with the untreated cells. These results provide new insights into the future of tailored DBD-CP design conditions for both the inactivation and biofilm reduction capacity of <i>B. cereus</i> sensu lato species, demonstrating the effectiveness of cold plasma and the risks associated with sublethal damage generation.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sublethal Damage Caused by Cold Plasma on <i>Bacillus cereus</i> Cells: Impact on Cell Viability and Biofilm-Forming Capacity.\",\"authors\":\"Laura Eced-Rodríguez, Michael Beyrer, Dolores Rodrigo, Alejandro Rivas, Consuelo Esteve, Maria Consuelo Pina-Pérez\",\"doi\":\"10.3390/foods13203251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Bacillus cereus</i> group represents a serious risk in powdered and amylaceous foodstuffs. Cold plasma (the fourth state of matter) is emerging as an alternative effective nonthermal technology for pasteurizing a wide range of matrices in solid, liquid, and powder form. The present study aims to evaluate the mechanisms involved in <i>Bacillus cereus</i> inactivation via cold plasma, focusing on (i) the technology's ability to generate damage in cells (at the morphological and molecular levels) and (ii) studying the effectiveness of cold plasma in biofilm mitigation through the direct effect and inhibition of the biofilm-forming capacity of sublethally damaged cells post-treatment. Dielectric barrier discharge cold plasma (DBD-CP) technology was used to inactivate <i>B. cereus</i>, <i>B. thuringiensis</i>, and <i>B. mycoides</i> under plasma power settings of 100, 200, and 300 W and treatment times ranging from 1 to 10 min. Inactivation levels were achieved in 2-7 log<sub>10</sub> cycles under the studied conditions. Percentages of sublethally damaged cells were observed in a range of 45-98%, specifically at treatment times below 7 min. The sublethally damaged cells showed poration, erosion, and loss of integrity at the superficial level. At the molecular level, proteins and DNA leakage were also observed for <i>B. cereus</i> but were minimal for <i>B. mycoides</i>. Biofilms formed by <i>B. cereus</i> were progressively disintegrated under the DBD-CP treatment. The greater the CP treatment intensity, the greater the tearing of the bacteria's biofilm network. Additionally, cells sublethally damaged by DBD-CP were evaluated in terms of their biofilm-forming capacity. Significant losses in the damaged cells' biofilm network density and aggregation capacity were observed when <i>B. cereus</i> was recovered after inactivation at 300 W for 7.5 min, compared with the untreated cells. These results provide new insights into the future of tailored DBD-CP design conditions for both the inactivation and biofilm reduction capacity of <i>B. cereus</i> sensu lato species, demonstrating the effectiveness of cold plasma and the risks associated with sublethal damage generation.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13203251\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13203251","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Sublethal Damage Caused by Cold Plasma on Bacillus cereus Cells: Impact on Cell Viability and Biofilm-Forming Capacity.
The Bacillus cereus group represents a serious risk in powdered and amylaceous foodstuffs. Cold plasma (the fourth state of matter) is emerging as an alternative effective nonthermal technology for pasteurizing a wide range of matrices in solid, liquid, and powder form. The present study aims to evaluate the mechanisms involved in Bacillus cereus inactivation via cold plasma, focusing on (i) the technology's ability to generate damage in cells (at the morphological and molecular levels) and (ii) studying the effectiveness of cold plasma in biofilm mitigation through the direct effect and inhibition of the biofilm-forming capacity of sublethally damaged cells post-treatment. Dielectric barrier discharge cold plasma (DBD-CP) technology was used to inactivate B. cereus, B. thuringiensis, and B. mycoides under plasma power settings of 100, 200, and 300 W and treatment times ranging from 1 to 10 min. Inactivation levels were achieved in 2-7 log10 cycles under the studied conditions. Percentages of sublethally damaged cells were observed in a range of 45-98%, specifically at treatment times below 7 min. The sublethally damaged cells showed poration, erosion, and loss of integrity at the superficial level. At the molecular level, proteins and DNA leakage were also observed for B. cereus but were minimal for B. mycoides. Biofilms formed by B. cereus were progressively disintegrated under the DBD-CP treatment. The greater the CP treatment intensity, the greater the tearing of the bacteria's biofilm network. Additionally, cells sublethally damaged by DBD-CP were evaluated in terms of their biofilm-forming capacity. Significant losses in the damaged cells' biofilm network density and aggregation capacity were observed when B. cereus was recovered after inactivation at 300 W for 7.5 min, compared with the untreated cells. These results provide new insights into the future of tailored DBD-CP design conditions for both the inactivation and biofilm reduction capacity of B. cereus sensu lato species, demonstrating the effectiveness of cold plasma and the risks associated with sublethal damage generation.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds