{"title":"干热处理引起的全粒玉米粉营养和技术功能特性的变化","authors":"Marijana Simić, Valentina Nikolić, Beka Sarić, Danka Milovanović, Marija Kostadinović, Slađana Žilić","doi":"10.3390/foods13203314","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was carried out to demonstrate the effects of dry heat treatment (DHT) at different temperatures (100, 125, 135, 150, and 165 °C) on the nutritional and techno-functional properties of white, blue, and yellow whole grain maize flour. Results showed that DHT increased the insoluble dietary fiber and free phenolic compounds of the investigated maize flours, while the bound phenolic compounds, anthocyanins, and pasting properties decreased with the rising of the applied temperature. The application of DHT caused the most notable changes regarding the amount of dietary fiber. Content of NDF (neutral detergent fiber) ranged from 11.48% to 44.35%, 14.19% to 37.84%, and 15.15% to 45.86% in white, yellow, and blue maize samples, respectively. Furthermore, at the highest temperature applied in the DHT (165 °C) the content of soluble free phenolic compounds in yellow and blue maize flour samples was 1.2- and 1.4-fold higher compared to control flour samples. DHT significantly improved the functionality of maize flour in terms of water absorption capacity, water solubility, and digestibility, thus it can be effectively used to make up for the poor functionality of raw maize flour. This study shows that DHT at moderate temperatures (125-135 °C), could be a viable solution for the pre-processing of maize flour to enhance the potential for its utilization in the food industry.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in Nutritional and Techno-Functional Properties of Whole Grain Maize Flours Induced by Dry-Heat Treatment.\",\"authors\":\"Marijana Simić, Valentina Nikolić, Beka Sarić, Danka Milovanović, Marija Kostadinović, Slađana Žilić\",\"doi\":\"10.3390/foods13203314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study was carried out to demonstrate the effects of dry heat treatment (DHT) at different temperatures (100, 125, 135, 150, and 165 °C) on the nutritional and techno-functional properties of white, blue, and yellow whole grain maize flour. Results showed that DHT increased the insoluble dietary fiber and free phenolic compounds of the investigated maize flours, while the bound phenolic compounds, anthocyanins, and pasting properties decreased with the rising of the applied temperature. The application of DHT caused the most notable changes regarding the amount of dietary fiber. Content of NDF (neutral detergent fiber) ranged from 11.48% to 44.35%, 14.19% to 37.84%, and 15.15% to 45.86% in white, yellow, and blue maize samples, respectively. Furthermore, at the highest temperature applied in the DHT (165 °C) the content of soluble free phenolic compounds in yellow and blue maize flour samples was 1.2- and 1.4-fold higher compared to control flour samples. DHT significantly improved the functionality of maize flour in terms of water absorption capacity, water solubility, and digestibility, thus it can be effectively used to make up for the poor functionality of raw maize flour. This study shows that DHT at moderate temperatures (125-135 °C), could be a viable solution for the pre-processing of maize flour to enhance the potential for its utilization in the food industry.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13203314\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13203314","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Changes in Nutritional and Techno-Functional Properties of Whole Grain Maize Flours Induced by Dry-Heat Treatment.
The present study was carried out to demonstrate the effects of dry heat treatment (DHT) at different temperatures (100, 125, 135, 150, and 165 °C) on the nutritional and techno-functional properties of white, blue, and yellow whole grain maize flour. Results showed that DHT increased the insoluble dietary fiber and free phenolic compounds of the investigated maize flours, while the bound phenolic compounds, anthocyanins, and pasting properties decreased with the rising of the applied temperature. The application of DHT caused the most notable changes regarding the amount of dietary fiber. Content of NDF (neutral detergent fiber) ranged from 11.48% to 44.35%, 14.19% to 37.84%, and 15.15% to 45.86% in white, yellow, and blue maize samples, respectively. Furthermore, at the highest temperature applied in the DHT (165 °C) the content of soluble free phenolic compounds in yellow and blue maize flour samples was 1.2- and 1.4-fold higher compared to control flour samples. DHT significantly improved the functionality of maize flour in terms of water absorption capacity, water solubility, and digestibility, thus it can be effectively used to make up for the poor functionality of raw maize flour. This study shows that DHT at moderate temperatures (125-135 °C), could be a viable solution for the pre-processing of maize flour to enhance the potential for its utilization in the food industry.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds