João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli
{"title":"ESR Essentials:欧洲医学影像信息学学会提出的放射组学实践建议。","authors":"João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli","doi":"10.1007/s00330-024-11093-9","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"1122-1132"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835989/pdf/","citationCount":"0","resultStr":"{\"title\":\"ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.\",\"authors\":\"João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli\",\"doi\":\"10.1007/s00330-024-11093-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"1122-1132\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11093-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11093-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.
Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.