Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik
{"title":"黑曲霉外β-(1,3)-葡聚糖酶的晶体结构揭示了寡糖的结合、识别和水解过程。","authors":"Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik","doi":"10.1002/1873-3468.15045","DOIUrl":null,"url":null,"abstract":"<p><p>Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis.\",\"authors\":\"Barnava Banerjee, Chinmay K Kamale, Abhishek B Suryawanshi, Subrata Dasgupta, Santosh Noronha, Prasenjit Bhaumik\",\"doi\":\"10.1002/1873-3468.15045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
外-β-(1,3)-葡聚糖酶是一种很有希望用于生物燃料工业的酶,因为它们能水解糖类,如海藻细胞壁的主要成分--层聚糖。本研究报告了属于 GH5 家族的黑曲霉外-β-(1,3)-葡聚糖酶(AoBgl)的结构和生物化学特征。纯化的 AoBgl 能有效地水解低聚糖层叠三糖和多糖层叠糖的β-(1,3)-糖苷键。我们测定了 AoBgl 的三种高分辨率结构:(a) 1.75 Å 的 apo 形式;(b) 1.73 Å 的与结合纤维二糖的复合物形式;(c) 1.20 Å 的与葡萄糖结合的形式。晶体结构、分子动力学模拟研究和定点突变揭示了底物结合模式和活性位点上的相互作用。研究结果还表明,AoBgl 能有效水解三糖和更高的寡糖。我们的结构和生化研究结果将有助于合理的工程设计工作,以产生更好的 AoBgl 变体和类似的 GH5 酶,供工业使用。
Crystal structures of Aspergillus oryzae exo-β-(1,3)-glucanase reveal insights into oligosaccharide binding, recognition, and hydrolysis.
Exo-β-(1,3)-glucanases are promising enzymes for use in the biofuel industry as they hydrolyse sugars such as laminarin, a major constituent of the algal cell wall. This study reports structural and biochemical characterizations of Aspergillus oryzae exo-β-(1,3)-glucanase (AoBgl) belonging to the GH5 family. Purified AoBgl hydrolyses β-(1,3)-glycosidic linkages of the oligosaccharide laminaritriose and the polysaccharide laminarin effectively. We have determined three high-resolution structures of AoBgl: (a) the apo form at 1.75 Å, (b) the complexed form with bound cellobiose at 1.73 Å and (c) the glucose-bound form at 1.20 Å. The crystal structures, molecular dynamics simulation studies and site-directed mutagenesis reveal the mode of substrate binding and interactions at the active site. The results also indicate that AoBgl effectively hydrolyses trisaccharides and higher oligosaccharides. The findings from our structural and biochemical studies would aid in rational engineering efforts to generate superior AoBgl variants and similar GH5 enzymes for their industrial use.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.