{"title":"采用分层任务分配的自适应隐私保护编码计算。","authors":"Qicheng Zeng, Zhaojun Nan, Sheng Zhou","doi":"10.3390/e26100881","DOIUrl":null,"url":null,"abstract":"<p><p>Coded computing is recognized as a promising solution to address the privacy leakage problem and the straggling effect in distributed computing. This technique leverages coding theory to recover computation tasks using results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, designed to be applicable to various types of computation tasks, including polynomial and non-polynomial functions, and to adaptively provide accurate or approximated results. We prove the optimality of APCC in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding, based on the optimal recovery threshold of Lagrange Coded Computing. We demonstrate that APCC guarantees information-theoretical data privacy preservation. Mitigation of the straggling effect in APCC is achieved through hierarchical task partitioning and task cancellation, which further reduces computation delays by enabling straggling workers to return partial results of assigned tasks, compared to conventional coded computing strategies. The hierarchical task partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. The simulation results show that APCC can reduce the task completion delay by a range of 20.3% to 47.5% when compared to other state-of-the-art benchmarks.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507084/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning.\",\"authors\":\"Qicheng Zeng, Zhaojun Nan, Sheng Zhou\",\"doi\":\"10.3390/e26100881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coded computing is recognized as a promising solution to address the privacy leakage problem and the straggling effect in distributed computing. This technique leverages coding theory to recover computation tasks using results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, designed to be applicable to various types of computation tasks, including polynomial and non-polynomial functions, and to adaptively provide accurate or approximated results. We prove the optimality of APCC in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding, based on the optimal recovery threshold of Lagrange Coded Computing. We demonstrate that APCC guarantees information-theoretical data privacy preservation. Mitigation of the straggling effect in APCC is achieved through hierarchical task partitioning and task cancellation, which further reduces computation delays by enabling straggling workers to return partial results of assigned tasks, compared to conventional coded computing strategies. The hierarchical task partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. The simulation results show that APCC can reduce the task completion delay by a range of 20.3% to 47.5% when compared to other state-of-the-art benchmarks.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26100881\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26100881","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning.
Coded computing is recognized as a promising solution to address the privacy leakage problem and the straggling effect in distributed computing. This technique leverages coding theory to recover computation tasks using results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, designed to be applicable to various types of computation tasks, including polynomial and non-polynomial functions, and to adaptively provide accurate or approximated results. We prove the optimality of APCC in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding, based on the optimal recovery threshold of Lagrange Coded Computing. We demonstrate that APCC guarantees information-theoretical data privacy preservation. Mitigation of the straggling effect in APCC is achieved through hierarchical task partitioning and task cancellation, which further reduces computation delays by enabling straggling workers to return partial results of assigned tasks, compared to conventional coded computing strategies. The hierarchical task partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. The simulation results show that APCC can reduce the task completion delay by a range of 20.3% to 47.5% when compared to other state-of-the-art benchmarks.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.