用于诊断和治疗未分化甲状腺癌的人类表皮生长因子受体 2(Her2)靶向 pH 响应 MR/NIRF 双模成像介导的纳米输送系统。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Qiushi Jia, Fulin Li, Chunxiang Li, Changzhi Guo, Shuang Wu, Liguo Hao, Zhongyuan Li
{"title":"用于诊断和治疗未分化甲状腺癌的人类表皮生长因子受体 2(Her2)靶向 pH 响应 MR/NIRF 双模成像介导的纳米输送系统。","authors":"Qiushi Jia, Fulin Li, Chunxiang Li, Changzhi Guo, Shuang Wu, Liguo Hao, Zhongyuan Li","doi":"10.1007/s13346-024-01727-2","DOIUrl":null,"url":null,"abstract":"<p><p>Undifferentiated thyroid cancer (ATC) is highly malignant and does not respond well to sorafenib (SRF) treatment owing to the lack of specificity of SRF targeting. Drug delivery nanosystems can improve the efficiencies of drug in treating various cancer types. However, many conventional drug delivery nanosystems lack targeting and exhibit unresponsive drug release. Therefore, we developed a pH-responsive nano-targeted drug delivery systems using human serum albumin (HSA) as a carrier to generate manganese dioxide (MnO<sub>2</sub>)@HSA nanoparticles (NPs), then encapsulated SRF and the fluorescent dye indocyanine green (ICG) and finally modifyed the targeting antibody pertuzumab in the outer layer of the nano complexes, resulting in SRF/ICG/MnO<sub>2</sub>@HSA-pertuzumab (HISMP) NPs. This system targets human epidermal growth factor receptor 2 on the cell membrane surface of thyroid cancer cells and is designed to accumulate at tumor sites. Then, pH-responsive release of divalent manganese ions, ICG, and SRF enables magnetic resonance/fluorescence (MR/NIRF) dual-modality imaging and precise drug delivery for diagnostic and therapeutic integration. Various characterization analyses including transmission electron microscopy, Fourier infrared spectroscopy, and particle size analysis confirm that we successfully synthesized HISMP NPs with a diameter of 150.709 nm. The results of CCK8 cytotoxicity and apoptosis assays show that HISMP NPs exhibited high cytotoxicity and induce apoptosis in thyroid cancer cells. In vivo MR/NIRF imaging experiments confirmed that the HISMP NPs specifically aggregated at tumor sites and have good in vivo MR/NIRF imaging ability and effective anti-tumor activity. The nano-delivery system is expected to provide a theoretical foundation for the efficient ATC diagnosis and therapy.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human epidermal growth factor receptor 2(Her2)-targeted pH-responsive MR/NIRF bimodal imaging-mediated nano-delivery system for the diagnosis and treatment of undifferentiated thyroid cancer.\",\"authors\":\"Qiushi Jia, Fulin Li, Chunxiang Li, Changzhi Guo, Shuang Wu, Liguo Hao, Zhongyuan Li\",\"doi\":\"10.1007/s13346-024-01727-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Undifferentiated thyroid cancer (ATC) is highly malignant and does not respond well to sorafenib (SRF) treatment owing to the lack of specificity of SRF targeting. Drug delivery nanosystems can improve the efficiencies of drug in treating various cancer types. However, many conventional drug delivery nanosystems lack targeting and exhibit unresponsive drug release. Therefore, we developed a pH-responsive nano-targeted drug delivery systems using human serum albumin (HSA) as a carrier to generate manganese dioxide (MnO<sub>2</sub>)@HSA nanoparticles (NPs), then encapsulated SRF and the fluorescent dye indocyanine green (ICG) and finally modifyed the targeting antibody pertuzumab in the outer layer of the nano complexes, resulting in SRF/ICG/MnO<sub>2</sub>@HSA-pertuzumab (HISMP) NPs. This system targets human epidermal growth factor receptor 2 on the cell membrane surface of thyroid cancer cells and is designed to accumulate at tumor sites. Then, pH-responsive release of divalent manganese ions, ICG, and SRF enables magnetic resonance/fluorescence (MR/NIRF) dual-modality imaging and precise drug delivery for diagnostic and therapeutic integration. Various characterization analyses including transmission electron microscopy, Fourier infrared spectroscopy, and particle size analysis confirm that we successfully synthesized HISMP NPs with a diameter of 150.709 nm. The results of CCK8 cytotoxicity and apoptosis assays show that HISMP NPs exhibited high cytotoxicity and induce apoptosis in thyroid cancer cells. In vivo MR/NIRF imaging experiments confirmed that the HISMP NPs specifically aggregated at tumor sites and have good in vivo MR/NIRF imaging ability and effective anti-tumor activity. The nano-delivery system is expected to provide a theoretical foundation for the efficient ATC diagnosis and therapy.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01727-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01727-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

未分化甲状腺癌(ATC)恶性程度高,由于缺乏SRF靶向的特异性,对索拉非尼(SRF)治疗反应不佳。纳米给药系统可以提高药物治疗各种癌症的效率。然而,许多传统的给药纳米系统缺乏靶向性,药物释放反应迟钝。因此,我们开发了一种pH响应纳米靶向给药系统,以人血清白蛋白(HSA)为载体,生成二氧化锰(MnO2)@HSA纳米颗粒(NPs),然后包覆SRF和荧光染料吲哚菁绿(ICG),最后在纳米复合物外层修饰靶向抗体pertuzumab,得到SRF/ICG/MnO2@HSA-pertuzumab(HISMP)NPs。该系统以甲状腺癌细胞膜表面的人表皮生长因子受体2为靶点,设计用于在肿瘤部位聚集。然后,二价锰离子、ICG 和 SRF 的 pH 响应释放可实现磁共振/荧光(MR/NIRF)双模态成像和精确给药,从而实现诊断和治疗一体化。透射电子显微镜、傅立叶红外光谱和粒度分析等各种表征分析证实,我们成功合成了直径为 150.709 nm 的 HISMP NPs。CCK8 细胞毒性和细胞凋亡实验结果表明,HISMP NPs 对甲状腺癌细胞具有较高的细胞毒性和诱导凋亡作用。体内磁共振/近红外成像实验证实,HISMP NPs在肿瘤部位特异性聚集,具有良好的体内磁共振/近红外成像能力和有效的抗肿瘤活性。该纳米给药系统有望为高效的 ATC 诊断和治疗提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human epidermal growth factor receptor 2(Her2)-targeted pH-responsive MR/NIRF bimodal imaging-mediated nano-delivery system for the diagnosis and treatment of undifferentiated thyroid cancer.

Undifferentiated thyroid cancer (ATC) is highly malignant and does not respond well to sorafenib (SRF) treatment owing to the lack of specificity of SRF targeting. Drug delivery nanosystems can improve the efficiencies of drug in treating various cancer types. However, many conventional drug delivery nanosystems lack targeting and exhibit unresponsive drug release. Therefore, we developed a pH-responsive nano-targeted drug delivery systems using human serum albumin (HSA) as a carrier to generate manganese dioxide (MnO2)@HSA nanoparticles (NPs), then encapsulated SRF and the fluorescent dye indocyanine green (ICG) and finally modifyed the targeting antibody pertuzumab in the outer layer of the nano complexes, resulting in SRF/ICG/MnO2@HSA-pertuzumab (HISMP) NPs. This system targets human epidermal growth factor receptor 2 on the cell membrane surface of thyroid cancer cells and is designed to accumulate at tumor sites. Then, pH-responsive release of divalent manganese ions, ICG, and SRF enables magnetic resonance/fluorescence (MR/NIRF) dual-modality imaging and precise drug delivery for diagnostic and therapeutic integration. Various characterization analyses including transmission electron microscopy, Fourier infrared spectroscopy, and particle size analysis confirm that we successfully synthesized HISMP NPs with a diameter of 150.709 nm. The results of CCK8 cytotoxicity and apoptosis assays show that HISMP NPs exhibited high cytotoxicity and induce apoptosis in thyroid cancer cells. In vivo MR/NIRF imaging experiments confirmed that the HISMP NPs specifically aggregated at tumor sites and have good in vivo MR/NIRF imaging ability and effective anti-tumor activity. The nano-delivery system is expected to provide a theoretical foundation for the efficient ATC diagnosis and therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信